Самый прочный на разрыв материал. Большая Энциклопедия Нефти и Газа. Прочность сталь. Каким образом производится испытание на прочность

Предел прочности - это то же, что и временное сопротивление материала. Но несмотря на то, что правильнее использовать термин временное сопротивление , понятие предел прочности лучше прижилось в технической разговорной речи. В то же время в нормативной документации, стандартах применяют термин "временное сопротивление".

ИЦМ(www.сайт)

Прочность - это сопротивление материала деформации и разрушению, одно из основных механических свойств . Другими словами, прочность - это свойство материалов, не разрушаясь, воспринимать те или иные воздействия (нагрузки, температурные, магнитные и другие поля).

К характеристикам прочности при растяжении относятся модуль нормальной упругости, предел пропорциональности, предел упругости, предел текучести и временное сопротивление (предел прочности).

Предел прочности - это максимальное механическое напряжение, выше которого происходит разрушение материала, подвергаемого деформации; предел прочности при растяжении обозначается σ В и измеряется в килограммах силы на квадратный сантиметр (кгс/см 2), а также указывается в мегапаскалях (МПа).

Различают:

  • предел прочности при растяжении,
  • предел прочности при сжатии,
  • предел прочности при изгибе,
  • предел прочности при кручении.

Предел кратковременной прочности (МПа) определяется с помощью испытаний на растяжение, деформацию проводят до разрушения. С помощью испытаний на растяжение определяют временное сопротивление, удлинение, предел упругости и др.. Испытания на длительную прочность предназначены главным образом для оценки возможности использования материалов при высоких температурах (длительная прочность, ползучесть); в результате определяется σ B/Zeit - предел ограниченной длительной прочности на заданный срок службы.

ИЦМ(www.сайт)

Прочность металлов

Физику прочности основал Галилей: обобщая свои опыты, он открыл (1638 г.), что при растяжении или сжатии нагрузка разрушения P для данного материала зависит только от площади поперечного сечения F . Так появилась новая физическая величина - напряжение σ=P /F - и физическая постоянная материала: напряжение разрушения .

Физика разрушения как фундаментальная наука о прочности металлов возникла в конце 40-х годов XX века ; это было продиктовано острой необходимостью разработки научно обоснованных мер для предотвращения участившихся катастрофических разрушений машин и сооружений. Раньше в области прочности и разрушения изделий учитывалась только классическая механика, основанная на постулатах однородного упруго-пластического твёрдого тела, без учёта внутренней структуры металла. Физика разрушения учитывает также атомно-кристаллическое строение решётки металлов, наличие дефектов металлической решётки и законы взаимодействия этих дефектов с элементами внутренней структуры металла: границами зёрен, второй фазой, неметаллическими включениями и др.

Большое влияние на прочность материала оказывает наличие ПАВ в окружающей среде, способных сильно адсорбироваться (влага, примеси); происходит уменьшение предела прочности.

К повышению прочности металла приводят целенаправленние изменения металлической структуры, в том числе - модифицирование сплава .

Учебный фильм о прочности металлов (СССР, год выпуска: ~1980):

Предел прочности металла

Предел прочности меди . При комнатной температуре предел прочности отожжённой технической меди σ В =23 кгс/мм 2 . С ростом температуры испытания предел прочности меди уменьшается. Легирующие элементы и примеси различным образом влияют на предел прочности меди, как увеличивая, так и уменьшая его.

Предел прочности алюминия . Отожжённый алюминий технической чистоты при комнатной температуре имеет предел прочности σ В =8 кгс/мм 2 . С повышением чистоты прочность алюминия уменьшается, а пластичность увеличивается. Например, литой в землю алюминий чистотой 99,996% имеет предел прочности 5 кгс/мм 2 . Предел прочности алюминия уменьшается естественным образом при повышении температуры испытания. При понижении температуры от +27 до -269°C временное сопротивление алюминия повышается - в 4 раза у технического алюминия и в 7 раз у высокочистого алюминия. Легирование повышает прочность алюминия.

ИЦМ(www.сайт)

Предел прочности сталей

В качестве примера представлены значения предела прочности некоторых сталей. Эти значения взяты из государственных стандартов и являются рекомендуемыми (требуемыми). Реальные значения предела прочности сталей, равно как и чугунов, а также других металлических сплавов зависят от множества факторов и должны определяться при необходимости в каждом конкретном случае.

Для стальных отливок, изготовленных из нелегированных конструкционных сталей, предусмотренных стандартом (стальное литьё, ГОСТ 977-88), предел прочности стали при растяжении составляет примерно 40-60 кг/мм 2 или 392-569 МПа (нормализация или нормализация с отпуском), категория прочности К20-К30. Для тех же сталей после закалки и отпуска регламентируемые категории прочности КТ30-КТ40, значения временного сопротивления уже не менее 491-736 МПа.

Для конструкционных углеродистых качественных сталей (ГОСТ 1050-88, прокат размером до 80 мм, после нормализации) :

  • Предел прочности стали 10 : сталь 10 имеет предел кратковременной прочности 330 МПа.
  • Предел прочности стали 20 : сталь 20 имеет предел кратковременной прочности 410 МПа.
  • Предел прочности стали 45 : сталь 45 имеет предел кратковременной прочности 600 МПа.

Категории прочности сталей

Категории прочности сталей (ГОСТ 977-88) условно обозначаются индексами «К» и «КТ», после индекса следует число, которое представляет собой значение требуемого предела текучести . Индекс «К» присваивается сталям в отожженном, нормализованном или отпущенном состоянии. Индекс «КТ» присваивается сталям после закалки и отпуска.

Предел прочности чугуна

Метод определения предела прочности чугуна регламентируется стандартом ГОСТ 27208-87 (Отливки из чугуна. Испытания на растяжение, определение временного сопротивления).

Предел прочности серого чугуна . Серый чугун (ГОСТ 1412-85) маркируется буквами СЧ, после букв следуют цифры, которые указывают минимальную величину предела прочности чугуна - временного сопротивления при растяжении (МПа*10 -1). ГОСТ 1412-85 распространяется на чугуны с пластинчатым графитом для отливок марок СЧ10-СЧ35; отсюда видно, минимальные значения предела прочности серого чугуна при растяжении в литом состоянии или после термической обработки варьируются от 10 до 35 кгс/мм 2 (или от 100 до 350 МПа). Превышение минимального значения предела прочности серого чугуна допускается не более, чем на 100 МПа, если иное не оговорено отдельно.

Предел прочности высокопрочного чугуна . Маркировка высокопрочного чугуна также включает в себя цифры, обозначающие временное сопротивление при растяжении чугуна (предел прочности), ГОСТ 7293-85. Предел прочности при растяжении высокопрочного чугуна составляет 35-100 кг/мм 2 (или от 350 до 1000 МПа).

Из вышеизложенного видно, что чугун с шаровидным графитом может успешно конкурировать со сталью.

Подготовлено: Корниенко А.Э. (ИЦМ)

Лит.:

  1. Циммерман Р., Гюнтер К. Металлургия и материаловедение. Справ. изд. Пер. с нем. – М.: Металлургия, 1982. – 480 с.
  2. Иванов В.Н. Словарь-справочник по литейному производству. – М.: Машиностроение, 1990. – 384 с.: ил. - ISBN 5-217-00241-1
  3. Жуковец И.И. Механические испытания металлов: Учеб. для сред. ПТУ. - 2-е изд., перераб. и доп. – М.: Высш.шк., 1986. - 199 с.: ил. - (Профтехобразование). - ББК 34.2/ Ж 86/ УДЖ 620.1
  4. Штремель М.А. Прочность сплавов. Часть II. Деформация: Учебник для вузов. - М.:*МИСИС*, 1997. - 527 с.
  5. Мешков Ю.Я. Физика разрушения стали и актуальные вопросы конструкционной прочности // Структура реальных металлов: Сб. науч. тр. - Киев: Наук. думка, 1988. - С.235-254.
  6. Френкель Я.И. Введение в теорию металлов. Издание четвёртое. - Л.: "Наука", Ленингр. отд., 1972. 424 с.
  7. Получение и свойства чугуна с шаровидным графитом. Под редакцией Гиршовича Н.Г. - М.,Л.: Ленинградское отделение Машгиза, 1962, - 351 с.
  8. Бобылев А.В. Механические и технологические свойства металлов. Справочник. - М.: Металлургия, 1980. 296 с.

Предел прочности - максимальное напряжение, которому может подвергаться материал до момента его разрушения. Если говорить о данном показателе по отношению к металлам, то здесь он равен соотношению критической нагрузки к площади его поперечного сечения при проведении теста на разрыв. В целом же прочность показывает, какая сила требуется для преодоления и разрыва внутренних связей между молекулами материала.

Каким образом производится испытание на прочность?

Тестирование металлов на прочность выполняется при помощи специализированных механизмов, которые позволяют устанавливать необходимую мощность при испытаниях на разрыв. Состоят такие машины из специального нагружающего элемента, с помощью которого создается необходимое усилие.

Оборудование для испытания металлов на прочность дает возможность производить растяжение тестируемых материалов и устанавливать определенные величины усилия, которое прилагается к образцу. На сегодняшний день существуют гидравлические и механические типы механизмов для испытания материалов.

Виды пределов прочности

Предел прочности является одним из основных свойств материалов. Информация о предельной прочности тех или иных материалов является крайне важной при необходимости определения возможностей их применения в тех или иных промышленных сферах.

Выделяют несколько отдельных пределов прочности материалов:

  • при сжатии;
  • при изгибе;
  • при кручении;
  • при растяжении.

Формирование понятия о пределе прочности металлов

О пределе прочности в свое время говорил еще Галилей, который определил, что гранично-допустимый предел сжатия и растяжения материалов зависит от показателя их поперечного сечения. Благодаря исследованиям ученого возникла ранее неизведанная величина - напряжение разрушения.

Современное учение о прочности металлов сформировалось в средине XX века, что было необходимо исходя из потребности в разработке научного подхода для предотвращения возможных разрушений промышленных сооружений и машин во время их эксплуатации. До этого момента при определении прочности материала учитывалась лишь степень его пластичности и упругости и совершенно не учитывалась внутренняя структура.

Предел прочности стали

Сталь является основным сырьевым материалом в большинстве промышленных сфер. Широко применяется она в строительстве. Именно поэтому для выполнения конкретных задач очень важно заблаговременно подбирать высококачественный, действительно подходящий тип стали. От правильного расчета предела прочности определенной марки стали напрямую зависит результат и качество выполненных работ.

Как пример можно привести несколько значений предельных показателей прочности сталей. Данные значения основаны на требованиях государственных стандартов и представляют собой рекомендуемые параметры. Так, для изделий, отлитых из конструкционной нелегированной стали, предусмотрен стандарт ГОСТ 977-88, согласно которому, предельное значение прочности при испытании на растяжение составляет порядка 50-60 кг/мм 2 , что равняется примерно 400-550 МПа. Аналогичная марка стали после прохождения процедуры закалки приобретает значение сопротивления на растяжение более 700 МПа.

Объективный предел прочности стали 45 (или любой другой марки материала, в равной степени как и железа или чугуна, а также остальных сплавов металла) зависит от целого ряда факторов, которые должны определяться исходя из поставленных задач, что ложатся на материал при его применении.

Прочность меди

В обычных условиях комнатной температуры отожженная техническая медь обладает пределом прочности порядка 23 кг/мм 2 . При значительных температурных нагрузках на материал его предельная прочность существенно снижается. На показателях предельной прочности меди отражается наличие в металле всевозможных примесей, которые могут как повышать данный показатель, так и приводить к его снижению.

Прочность алюминия

Отожженная фракция технического алюминия при комнатной температуре отличается пределом прочности до 8 кг/мм 2 . Повышение чистоты материала увеличивает его пластичность, но отражается на снижении прочности. В качестве примера можно взять алюминий, показатель чистоты которого составляет 99,99%. В данном случае предельная прочность материала достигает около 5 кг/мм 2 .

Уменьшение предела прочности алюминиевой тестовой заготовки наблюдается при ее нагревании во время проведения испытаний на растяжение. В свою очередь, снижение температуры металла в пределах от +27 до -260 о С временно повышает исследуемый показатель в 4 раза, а при испытании фракции алюминия высочайшей чистоты - в целых 7 раз. В то же время несколько повысить прочность алюминия можно методом его легирования.

Прочность железа

На сегодняшний день методом промышленной и химической обработки удалось получить нитевидные кристаллы железа с пределом прочности до 13 000 Мпа. Наряду с этим, прочность технического железа, которое широко применяется в самых разнообразных сферах, составляет близко 300 МПа.

Естественно, каждый образец материала при его исследовании на уровень прочности обладает своими дефектами. На практике доказано, что реальная объективная предельная прочность любого металла, независимо от его фракции, меньше по сравнению с данными, полученными в ходе теоретических расчетов. Данную информацию необходимо обязательно принимать во внимание при выборе определенного типа и марки металла для выполнения конкретных задач.

Производство проката подразумевает изготовление огромного количества разновидностей конструкционных сталей. Сооружения во время эксплуатации испытывают сложные нагрузки на растяжение, сжатие, удары, изгиб или действующие одновременно и в комплексе. Для тяжелых и сложных условий работы конструкций, механизмов и сооружений требуется обеспечить долговечность, безопасность и надежность работы, в связи с чем к металлу, как к основному конструкционному материалу , предъявляются повышенные требования.

Главным в расчете конструкций является стремление уменьшить сечение стальных конструкций современных узлов для снижения их массы и экономного расходования материала без уменьшения несущей способности сооружения. В зависимости от условий работы, требования к сталям изменяются, но существуют стандартные, которые являются важными и применяются в процессе расчетных работ. Конструкционная сталь должна соответствовать высоким прочностным характеристикам при достаточной пластичности материала.

Предел текучести – немаловажная условная физическая величина, непосредственно используемая в расчетных формулах. Применение этого показателя в качестве основы при расчете конструкции на прочность является обоснованным, так как при эксплуатации в сооружении появляются необратимые изменения линейных размеров, что приводит к разрушению формы изделия и выходу его из строя. Повышение этой характеристики дает возможность уменьшить расчетные сечения материала и вес металлических конструкций и позволяет повысить рабочие нагрузки.

Пределом текучести металлов называют характеристику стали, показывающую критическое напряжение, после которого продолжается деформация материала без повышения нагрузки. Это важный показатель измеряется в Паскалях (Па) или МегаПаскалях (МПа), и позволяют рассчитывать предел допустимых напряжений для пластичных сталей.

После того как материал преодолеет предел текучести, в нем происходят необратимые деформации, изменяется структура кристаллической решетки, происходят пластические изменения. Если растягивающее значение силы увеличивается, то после прохождения площадки текучести продолжают увеличиваться деформации сталей.

Часто понятие текучести сталей называют напряжением, при котором начинается необратимая деформация, не определяя различия с пределом упругости. Но в реальных условиях значение показателя предела текучести превышает предел упругости на величину около 5%.

Общие сведения и характеристики сталей

Сталь относят к ковкому деформируемому сплаву на основе железа с углеродом и добавками других элементов. Выплавляют материал из чугунных смесей с металлическим ломом в мартеновских, электрических и кислородных конверторных печах.

Сформировавшаяся кристаллическая решетка металла зависит от количества содержащегося в них углерода и определяется по структурной диаграмме в соответствии с процессами в этом сплаве. Например, решетка стали, в которой содержится до 0,06% углерода, имеет зернистую структуру и является ферритом в чистом виде. Прочность таких металлов небольшая, но материал обладает высоким пределом ударной вязкости и текучести. Структуры сталей в состоянии равновесия подразделяются:

  • ферритная;
  • перлитно-ферритная;
  • цементитно-ферритная;
  • цементитно-перлитная;
  • перлитная;

Влияние содержание углерода на свойства сталей

Изменения главных составляющих цементита и феррита определяются свойствами первого по закону аддитивности. Увеличение процентной добавки углерода до 1,2% позволяет повысить прочность, твердость, порог хладоемкости на 20ºС и предел текучести. Повышение содержания углерода изменяет физические свойства материала, что иногда приводит к ухудшению технических характеристик , таких как способность к свариванию, деформации при штамповках. Отличным свариванием в конструкциях обладают низкоуглеродистые сплавы.

Добавки марганца и кремния

Марганец вводят в состав сплава в качестве технологической добавки для увеличения степени раскисления и уменьшения вредного воздействия серных примесей. В сталях он присутствует в виде твердых составляющих в количестве не более 0,8% и не оказывает существенного влияния на свойства металла.

Кремний действует в составе сплава аналогичным образом, добавляется при процессе раскисления в количестве не больше 0,38%. Для возможности соединения деталей сваркой содержание кремния не должно быть больше 0,24%. На свойства сталей кремний в составе сплава не влияет.

Пределом содержания серы в сплаве является порог в 0,06% , она содержится в виде хрупких сульфитов. Повышенное содержание примеси существенно ухудшает механические и физические свойства сталей. Это выражается в уменьшении пластичности, предела текучести, ударной вязкости, сопротивления истиранию и коррозии.

Содержание фосфора также ухудшает качественные показатели металлических сплавов , предел текучести после увеличения фосфора в составе повышается, но снижается вязкость и пластичность. Стандартное содержание примеси в сплаве регламентируется интервалом от 0,025 до 0,044%. Наиболее сильно фосфор ухудшает свойства сталей при одновременном высоком показателе добавок углерода.

Азот и кислород в сплаве

Эти вещества загрязняют сталь неметаллическими примесями и ухудшают ее механические и физические показатели. В частности, это относится к порогу вязкости и выносливости , пластичности и хрупкости. Содержание в сплаве кислорода в размере больше, чем 0,03% вызывает быстрое старение металла, азот увеличивает ломкость и повышает со временем деформационное старение. Содержание азота увеличивает прочность, тем самым понижая предел текучести.

Легирующие добавки в составе сплавов

К легированным относят стали, в которые специально вводятся в определенных сочетаниях элементы для повышения качественных характеристик. Комплексное легирование дает наилучшие результаты . В качестве добавок применяют хром, никель, молибден, вольфрам, ванадий, титан и другие.

Легированием повышают предел текучести и другие технологические свойства, такие как ударная вязкость, сужение и возможность прокаливания, снижение порога деформации и растрескивания.

Чтобы полностью изучить свойства материала и определения предела текучести, пластических деформаций и прочности проводят испытание образцов металла до полного разрушения. Испытание проводят при действии нагрузок следующего вида:

Определение пределов испытательных нагрузок производят в стандартных условиях, с применением специальных машин, которые описаны в правилах Государственных стандартов.

Испытание образца для определения предела текучести

Для этого берут образец цилиндрической формы размером 20 мм, расчетной длиной 10 мм и применяют к нему нагрузку растяжением. Понятие расчетной длины обозначает расстояние между рисками, нанесенными на более длинном образце для возможности захвата. Для проведения испытания определяют зависимость между увеличением растягивающей силы и удлинением испытательного образца .

Все показания испытания автоматически отображаются в виде диаграммы для наглядного сравнения. Ее называют диаграммой условного растяжения или условного напряжения, график зависит от первоначального сечения образца и первоначальной его длины. Вначале увеличение силы приводит к пропорциональному удлинению образца. Такое положение действует до предела пропорциональности.

После достижения этого порога график становится криволинейным и обозначает непропорциональное увеличение длины при равномерном повышении нагрузки. Дальше следует определение предела текучести. До тех пор, пока напряжения в образце не превосходят этого показателя, то материал с прекращением нагрузки может вернуться в первоначальное состояние относительно размеров и формы. На практике испытательного процесса разница между этими пределами невелика и не стоит особого внимания.

Предел текучести

Если продолжать увеличивать нагрузку, то наступает такой момент испытания, когда изменение формы и размеров продолжается без увеличения силы. На диаграмме это показывается горизонтальной прямой (площадкой) текучести. Фиксируется максимальное напряжение, при котором увеличивается деформация, после прекращения наращивания нагрузки. Этот показатель называется пределом текучести. Для стали Ст. 3 предел текучести от 2450 кг на квадратный сантиметр.

Условный предел текучести

Многие металлы при испытании дают диаграмму, на которой площадка текучести отсутствует или плохо выражена, для них применяется понятие условного предела текучести. Это понятие определяет напряжение, которое вызывает остаточное изменение или деформацию в пределе 0,2% . Металлами, к которым применяется понятие условного предела текучести, служат легированные и высокоуглеродистые стали, бронза, дюралюминий и другие. Чем пластичнее сталь, тем больше показание остаточных деформаций. К ним относят алюминий, латунь, медь и низкоуглеродистые стали.

Испытания стальных образцов показывает, что текучесть металла вызывает значительные сдвиги кристаллов в решетке, и характеризуется появлением на поверхности линий, направленные к центральной оси цилиндра.

Предел прочности

После изменения на некоторую величину происходит переход образца в новую фазу, когда после преодоления предела текучести, металл снова может сопротивляться растяжению . Это характеризуется упрочнением, и линия диаграммы снова поднимается, хотя повышение происходит в более пологом проявлении. Появляется временное сопротивление постоянной нагрузке.

После достижения максимального напряжения (предела прочности) на образце появляется участок резкого сужения, так называемой шейки, характеризующейся уменьшением площади поперечного сечения, и образец рвется в самом тонком месте. При этом значение напряжения резко падает, уменьшается и величина силы.

Сталь Ст.3 характеризуется пределом прочности 4000–5000 кГ/см2. Для высокопрочных металлов такой показатель достигает предела 17500 кГ/см3 этот.

Пластичность материала

Характеризуется двумя показателями:

  • остаточное относительное удлинение;
  • остаточное сужение при разрыве.

Для определения первого показателя измеряют общую длину растянутого образца после разрыва. Чтобы это сделать, складывают две половинки друг с другом. Измерив длину, высчитывают процентное отношение к первоначальной длине. Прочные сплавы менее подвержены пластичности и показатель относительного удлинения снижается до 63 эта11%.

Вторая характеристика рассчитывается после измерения наиболее узкой части разрыва и высчитывается в процентном отношении к первоначальной площади среза образца.

Свойством, противоположным пластичности, является показатель хрупкости материала . Хрупкими металлами считают чугун, инструментальную сталь. Деление сталей на хрупкие и пластичные производится условно, так как для определения этого показателя имеет значение условия работы или испытания, скорость повышения нагрузки, температура окружающей среды.

Некоторые материалы в разных условиях ведут себя совсем не как хрупкие. Например, чугун, расположенный так, что зажат со всех сторон, не разрушается даже при и возникающих внутри напряжениях. Сталь с проточками характеризуется повышенной хрупкостью. Отсюда вывод, что гораздо целесообразнее испытывать не пределы хрупкости, а определять состояние материала, как пластичное или хрупкое.

Испытания сталей для определения физических и технических свойств делаются с целью получить достоверные данные для произведения работ при строительстве и создания конструкций в хозяйстве.

Когда на металлический образец действует сила или система сил, он реагирует на это, изменяя свою форму (деформируется). Различные характеристики, которыми определяются поведение и конечное состояние металлического образца в зависимости от вида и интенсивности сил, называются механическими свойствами металла.

Интенсивность силы, действующей на образец, называется напряжением и измеряется как полная сила, отнесенная к площади, на которую она действует. Под деформацией понимается относительное изменение размеров образца, вызванное приложенными напряжениями.

Упругая и пластическая деформация, разрушение

Если напряжение, приложенное к металлическому образцу, не слишком велико, то его деформация оказывается упругой – стоит снять напряжение, как его форма восстанавливается. Некоторые металлические конструкции намеренно проектируют так, чтобы они упруго деформировались. Так, от пружин обычно требуется довольно большая упругая деформация. В других случаях упругую деформацию сводят к минимуму. Мосты, балки, механизмы, приборы делают по возможности более жесткими. Упругая деформация металлического образца пропорциональна силе или сумме сил, действующих на него. Это выражается законом Гука, согласно которому напряжение равно упругой деформации, умноженной на постоянный коэффициент пропорциональности, называемый модулем упругости: s = ∆ Y , где s – напряжение, – упругая деформация, а Y – модуль упругости (модуль Юнга). Модули упругости ряда металлов представлены в табл. 1.

Таблица 1

Вольфрам

Железо (сталь)

Алюминий

Пользуясь данными этой таблицы, можно вычислить, например, силу, необходимую для того, чтобы растянуть стальной стержень квадратного поперечного сечения со стороной 1 см на 0,1% его длины:

F = 200 000 МПа х 1 см 2 х 0,001 = 20 000 Н (= 20 кН)

Когда к металлическому образцу прикладываются напряжения, превышающие его предел упругости, они вызывают пластическую (необратимую) деформацию, приводящую к необратимому изменению его формы. Более высокие напряжения могут вызвать разрушение материала.

Важнейшим критерием при выборе металлического материала , от которого требуется высокая упругость, является предел текучести. У самых лучших пружинных сталей практически такой же модуль упругости, как и у самых дешевых строительных, но пружинные стали способны выдерживать гораздо большие напряжения, а следовательно, и гораздо большие упругие деформации без пластической деформации, поскольку у них выше предел текучести.

Пластические свойства металлического материала (в отличие от упругих) можно изменять путем сплавления и термообработки. Так, предел текучести железа подобными методами можно повысить в 50 раз. Чистое железо переходит в состояние текучести уже при напряжениях порядка 40 МПа, тогда как предел текучести сталей, содержащих 0,5% углерода и несколько процентов хрома и никеля, после нагревания до 950 С 0 и закалки может достигать 2000 МПа.

Когда металлический материал нагружен с превышением предела текучести, он продолжает деформироваться пластически, но в процессе деформирования становится более твердым, так что для дальнейшего увеличения деформации требуется все больше повышать напряжение. Такое явление называется деформационным или механическим упрочнением (а также наклепом). Его можно продемонстрировать, скручивая или многократно перегибая металлическую проволоку. Деформационное упрочнение металлических изделий часто осуществляется на заводах. Листовую латунь, медную проволоку, алюминиевые стержни можно холодной прокаткой или холодным волочением довести до уровня твердости, который требуется от окончательной продукции.

Бернштейн М.Л., Займовский В.А. Механические свойства металлов . М., 1979
Уайэтт О.Г., Дью-Хьюз Д. Металлы, керамики, полимеры . М., 1979
Павлов П.А. Механические состояния и прочность материалов . Л., 1980
Соболев Н.Д., Богданович К.П. Механические свойства материалов и основы физики прочности . М., 1985
Жуковец И.И. Механические испытания металлов . М., 1986
Бобылев А.В. Механические и технологические свойства металлов . М., 1987

Пределом текучести называют напряжение, соответствующее остаточному значению удлинения после снятия нагрузки. Определение этой величины необходимо для выбора металлов, используемых в производстве. Если не учесть рассматриваемый параметр, то это может привести к интенсивному процессу развития деформации в неправильно выбранном материале. Очень важно учитывать пределы текучести при конструировании различных металлических конструкций.

Физическая характеристика

Пределы текучести относятся к показателям прочности. Они представляют собой макропластическую деформацию с довольно малым упрочнением. Физически этот параметр можно представить как характеристику материала, а именно: напряжение, которое отвечает нижнему значению площадки текучести в графике (диаграмме) растяжения материалов. Это же можно представить в виде формулы: σ Т =P Т /F 0 , где P Т означает нагрузку предела текучести, а F 0 соответствует первоначальной площади поперечного сечения рассматриваемого образца. ПТ устанавливает так называемую границу между упруго-пластической и упругой зонами деформирования материала. Даже незначительное увеличение ПТ) вызовет существенную деформацию. Пределы текучести металлов принято измерять в кг/мм 2 либо Н/м 2 . На величину данного параметра оказывают влияние разные факторы, например, режим термообработки, толщина образца, наличие легирующих элементов и примесей, тип, микроструктура и дефекты кристаллической решетки и прочее. Предел текучести значительно меняется при изменении температуры. Рассмотрим пример практического значения данного параметра.

Предел текучести труб

Наиболее наглядным является влияние данной величины при строительстве трубопроводов систем высокого давления. В таких конструкциях должна использоваться специальная сталь, у которой достаточно большие пределы текучести, а также минимальные показатели разрыва между данным параметром и Чем больше у стали предел, тем, естественно, более высоким должен быть показатель допустимой величины рабочего напряжения. Данный факт оказывает прямое влияние на значение прочности стали, и соответственно, всей конструкции в целом. В связи с тем что параметр допустимой расчетной величины системы напряжений оказывает непосредственное влияние на необходимое значение толщины стен в используемых трубах, то важно максимально точно рассчитывать характеристики прочности стали, которая будет использоваться при изготовлении труб. Одним из наиболее аутентичных методов определения данных параметров является проведение исследования на разрывном образце. Во всех случаях требуется учитывать разницу значений рассматриваемого показателя, с одной стороны, и допустимыми значениями напряжений - с другой.

Кроме того, следует знать, что предел текучести металла всегда устанавливается в результате проведения детальных многоразовых замеров. А вот систему допустимых напряжений в подавляющем большинстве принимают исходя из нормативов или вообще в результате проведенных технических условий, а также опираясь на личный опыт производителя. В системах магистральных трубопроводов весь нормативный сборник описан в СНиП II-45-75. Итак, установка коэффициента запаса прочности - довольно сложная и весьма важная практическая задача. Корректное определение этого параметра всецело зависит от точности рассчитанных величин напряжения, нагрузки, а также предела текучести материала.

При выборе теплоизоляции систем трубопроводов также опираются на данный показатель. Это связано с тем, что эти материалы непосредственно вступают в контакт с металлической основой трубы, и, соответственно, могут принимать участие в электрохимических процессах, пагубно влияющих на состояние трубопровода.

Растяжение материалов

Предел текучести при растяжении определяет, при какой величине напряжение останется неизменным либо снизится, несмотря на удлинение. То есть данный параметр достигнет критической отметки тогда, когда произойдет переход от упругой к пластической области деформации материала. Получается, что предел текучести можно определить путем проведения тестирования стержня.

Расчет ПТ

В сопротивлении материалов пределом текучести является напряжение, при котором начинается развиваться Давайте рассмотрим, каким образом производится расчет этой величины. В опытах, проводимых с цилиндрическими образцами, определяют значение нормального напряжения в поперечном сечении в момент возникновения необратимой деформации. Таким же методом в опытах с кручением трубчатых образцов производят определение предела текучести при сдвиге. Для большинства материалов этот показатель определяется формулой σ Т =τ s √3. В некоторых экземплярах непрерывное удлинение цилиндрического образца на диаграмме зависимости нормальных напряжений от относительного удлинения приводит к обнаружению так называемого зуба текучести, то есть резкого снижения напряжения перед образованием пластической деформации.

Более того, дальнейший рост такого искажения до определенного значения происходит при постоянном напряжении , которое называют физическим ПТ. Если площадка текучести (горизонтальный участок графика) имеет большую протяженность, то такой материал называют идеально-пластическим. Если диаграмма не имеет площадки, то образцы называют упрочняющимися. В таком случае невозможно точно указать значение, при котором возникнет пластическая деформация.

Что такое условный предел текучести?

Давайте разберемся, что же это за параметр. В тех случаях, когда диаграмма напряжений не имеет выраженных площадок, требуется определять условный ПТ. Итак, это значение напряжения, при котором относительная остаточная деформация равна 0,2 процента. Для его вычисления на диаграмме напряжений по оси определения ε необходимо отложить величину, равную 0,2. От этой точки проводится начальному участку. В результате точка пересечения прямой с линией диаграммы определяет значение условного предела текучести для конкретного материала. Также данный параметр называют техническим ПТ. Кроме того, отдельно выделяют условные пределы текучести при кручении и изгибе.

Текучесть расплава

Этот параметр определяет способность расплавленных металлов заполнять линейные формы. Текучесть расплава для металлических сплавов и металлов имеет свой термин в металлургической промышленности - жидкотекучесть. По сути, это величина, обратная Международная система единиц (СИ) выражает текучесть жидкости в Па -1 *с -1 .

Временное сопротивление на разрыв

Давайте рассмотрим, каким образом определяется данная характеристика механических свойств. Прочностью называют способность материала при определенных пределах и условиях воспринимать различные воздействия, не разрушаясь. Механические свойства принято определять при помощи условных диаграмм растяжений. Для испытаний следует использовать стандартные образцы. Приборы для испытаний оснащаются устройством, которое записывает диаграмму. Повышение нагрузок сверх нормы вызывает существенную пластическую деформацию в изделии. Предел текучести и временное сопротивление на разрыв соответствуют наибольшей нагрузке, предшествующей полному разрушению образца. У пластичных материалов деформация сосредотачивается на одном участке, где появляется местное сужение поперечного сечения. Его еще называют шейкой. В результате развития множественных скольжений в материале образуется большая плотность дислокаций, а также возникают так называемые зародышевые несплошности. Вследствие их укрупнений в образце возникают поры. Сливаясь между собой, они образуют трещины, которые распространяются в поперечном направлении к оси растяжения. И в критический момент образец полностью разрушается.

Что представляет собой ПТ для арматуры?

Эти изделия являются неотъемлемой составной частью железобетона, предназначаемые, как правило, для сопротивления растягивающим усилиям. Обычно используют стальную арматуру, но бывают и исключения. Эти изделия должны работать совместно с массой бетона на всех без исключения стадиях загрузки данной конструкции, обладать пластичными и прочными свойствами. А также отвечать всем условиям индустриализации данных видов работ. Механические свойства стали, используемой при изготовлении арматуры, установлены соответствующим ГОСТом и техническими условиями. ГОСТ 5781-61 предусматривает четыре класса данных изделий. Первые три предназначены для обычных конструкций, а также ненапрягаемых стержней у предварительно напряженных системах. Предел текучести арматуры в зависимости от класса изделия может достигать 6000 кг/см 2 . Так, у первого класса этот параметр составляет примерно 500 кг/см 2 , у второго - 3000 кг/см 2 , у третьего 4000 кг/см 2 , а у четвертого - 6000 кг/см 2 .

Предел текучести сталей

Для сортового проката в базовом исполнении ГОСТ 1050-88 предусматривается следующие значения ПТ: марка 20 - 25 кгс/мм 2 , марка 30 - 30 кгс/мм 2 , марка 45 - 36 кгс/мм 2 . Однако для этих же сталей, изготавливаемых по предварительному согласованию потребителя и изготовителя, пределы текучести могут иметь иные значения (тот же ГОСТ). Так, 30 будет иметь ПТ в размере от 30 до 41 кгс/мм 2 , а марки 45 - в пределах 38-50 кгс/мм 2 .

Заключение

При проектировании различных (зданий, мостов и прочих) предел текучести используют в качестве показателя стандарта прочности при проведении расчетов значений допустимых нагрузок соответственно указанному коэффициенту запаса прочности. А вот для сосудов, находящихся под давлением, величину допустимой нагрузки рассчитывают на основе ПТ, а также прочности на разрыв, с учетом спецификации условий эксплуатации.

Предел прочности - максимальное напряжение, которому может подвергаться материал до момента его разрушения. Если говорить о данном показателе по отношению к металлам, то здесь он равен соотношению критической нагрузки к площади его поперечного сечения при проведении теста на разрыв. В целом же прочность показывает, какая сила требуется для преодоления и разрыва внутренних связей между молекулами материала.

Каким образом производится испытание на прочность?

Тестирование металлов на прочность выполняется при помощи специализированных механизмов, которые позволяют устанавливать необходимую мощность при испытаниях на разрыв. Состоят такие машины из специального нагружающего элемента, с помощью которого создается необходимое усилие.

Оборудование для испытания металлов на прочность дает возможность производить растяжение тестируемых материалов и устанавливать определенные величины усилия, которое прилагается к образцу. На сегодняшний день существуют гидравлические и механические типы механизмов для испытания материалов.

Виды пределов прочности

Предел прочности является одним из основных свойств материалов. Информация о предельной прочности тех или иных материалов является крайне важной при необходимости определения возможностей их применения в тех или иных промышленных сферах.

Выделяют несколько отдельных пределов прочности материалов:

  • при сжатии;
  • при изгибе;
  • при кручении;
  • при растяжении.

Формирование понятия о пределе прочности металлов

О пределе прочности в свое время говорил еще Галилей, который определил, что гранично-допустимый предел сжатия и растяжения материалов зависит от показателя их поперечного сечения. Благодаря исследованиям ученого возникла ранее неизведанная величина - напряжение разрушения.

Современное учение о прочности металлов сформировалось в средине XX века, что было необходимо исходя из потребности в разработке научного подхода для предотвращения возможных разрушений промышленных сооружений и машин во время их эксплуатации. До этого момента при определении прочности материала учитывалась лишь степень его пластичности и упругости и совершенно не учитывалась внутренняя структура.

Предел прочности стали

Сталь является основным сырьевым материалом в большинстве промышленных сфер. Широко применяется она в строительстве. Именно поэтому для выполнения конкретных задач очень важно заблаговременно подбирать высококачественный, действительно подходящий тип стали. От правильного расчета предела прочности определенной марки стали напрямую зависит результат и качество выполненных работ.

Как пример можно привести несколько значений предельных показателей прочности сталей. Данные значения основаны на требованиях государственных стандартов и представляют собой рекомендуемые параметры. Так, для изделий, отлитых из конструкционной нелегированной стали, предусмотрен стандарт ГОСТ 977-88, согласно которому, предельное значение прочности при испытании на растяжение составляет порядка 50-60 кг/мм 2 , что равняется примерно 400-550 МПа. Аналогичная марка стали после прохождения процедуры закалки приобретает значение сопротивления на растяжение более 700 МПа.

Объективный предел прочности стали 45 (или любой другой марки материала, в равной степени как и железа или чугуна, а также остальных сплавов металла) зависит от целого ряда факторов, которые должны определяться исходя из поставленных задач, что ложатся на материал при его применении.

Прочность меди

В обычных условиях комнатной температуры отожженная техническая медь обладает пределом прочности порядка 23 кг/мм 2 . При значительных температурных нагрузках на материал его предельная прочность существенно снижается. На показателях предельной прочности меди отражается наличие в металле всевозможных примесей, которые могут как повышать данный показатель, так и приводить к его снижению.

Прочность алюминия

Отожженная фракция технического алюминия при комнатной температуре отличается пределом прочности до 8 кг/мм 2 . Повышение чистоты материала увеличивает его пластичность, но отражается на снижении прочности. В качестве примера можно взять алюминий, показатель чистоты которого составляет 99,99%. В данном случае предельная прочность материала достигает около 5 кг/мм 2 .

Уменьшение предела прочности алюминиевой тестовой заготовки наблюдается при ее нагревании во время проведения испытаний на растяжение. В свою очередь, снижение температуры металла в пределах от +27 до -260 о С временно повышает исследуемый показатель в 4 раза, а при испытании фракции алюминия высочайшей чистоты - в целых 7 раз. В то же время несколько повысить прочность алюминия можно методом его легирования.

Прочность железа

На сегодняшний день методом промышленной и химической обработки удалось получить нитевидные кристаллы железа с пределом прочности до 13 000 Мпа. Наряду с этим, прочность технического железа, которое широко применяется в самых разнообразных сферах, составляет близко 300 МПа.

Естественно, каждый образец материала при его исследовании на уровень прочности обладает своими дефектами. На практике доказано, что реальная объективная предельная прочность любого металла, независимо от его фракции, меньше по сравнению с данными, полученными в ходе теоретических расчетов. Данную информацию необходимо обязательно принимать во внимание при выборе определенного типа и марки металла для выполнения конкретных задач.

Предел прочности

Определённая пороговая величина для конкретного материала, превышение которой приведёт к разрушению объекта под действием механического напряжения. Основные виды пределов прочности: статический, динамический, на сжатие и на растяжение. Например, предел прочности на растяжение - это граничное значение постоянного (статический предел) или переменного (динамический предел) механического напряжения, превышение которого разорвет (или неприемлемо деформирует) изделие. Единица измерения - Паскаль [Па], Н/мм ² = [МПа].

Предел текучести (σ т)

Величина механического напряжения, при которой деформация продолжает увеличиваться без увеличения нагрузки; служит для расчётов допустимых напряжений пластичных материалов.

После перехода предела текучести в структуре металла наблюдаются необратимые изменения: кристаллическая решетка перестраивается, появляются значительные пластические деформации. Вместе с тем происходит самоупрочнение металла и после площадки текучести деформация возрастает при увеличении растягивающей силы.

Нередко этот параметр определяют как «напряжение, при котором начинает развиваться пластическая деформация» , таким образом, отождествляя пределы текучести и упругости. Однако следует понимать, что это два разных параметра. Значения предела текучести превышают предел упругости ориентировочно на 5%.

Предел выносливости или предел усталости (σ R)

Способность материала воспринимать нагрузки, вызывающие циклические напряжения. Этот прочностной параметр определяют как максимальное напряжение в цикле, при котором не происходит усталостного разрушения изделия после неопределенно большого количества циклических нагружений (базовое число циклов для стали Nb = 10 7). Коэффициент R (σ R) принимается равным коэффициенту асимметрии цикла. Поэтому предел выносливости материала в случае симметричных циклов нагружения обозначают как σ -1 , а в случае пульсационных - как σ 0 .

Отметим, что усталостные испытания изделий очень продолжительны и трудоёмки, они включают анализ больших объёмов экспериментальных данных при произвольном количестве циклов и существенном разбросе значений. Поэтому чаще всего используют специальные эмпирические формулы, связывающие предел выносливости с другими прочностными параметрами материала. Наиболее удобным параметром при этом считается предел прочности.

Для сталей предел выносливости при изгибе как правило составляет половину от предела прочности: Для высокопрочных сталей можно принять:

Для обычных сталей при кручении в условиях циклически изменяющихся напряжений можно принять:

Приведённые выше соотношения стоит применять осмотрительно, потому что они получены при конкретных режимах нагружения, т.е. при изгибе и при кручении. Однако, при испытании на растяжение-сжатие предел выносливости становится примерно на 10-20% меньше, чем при изгибе.

Предел пропорциональности (σ)

Максимальная величина напряжения для конкретного материала, при которой ещё действует закон Гука, т.е. деформация тела прямо пропорционально зависит от прикладываемой нагрузки (силы). Обратите внимание, что для множества материалов достижение (но не превышение!) предела упругости приводит к обратимым (упругим) деформациям, которые, впрочем, уже не прямо пропорциональны напряжениям. При этом такие деформации могут несколько «запаздывать» относительно роста или снижения нагрузки.

Диаграмма деформации металлического образца при растяжении в координатах удлинение (Є) - напряжение (σ).

1:Предел абсолютной упругости.

2:Предел пропорциональности.

3:Предел упругости.

Прочность на разрыв или напряжение при разрыве выражаются в дин/см 2 . Предел упругости всегда лежит ниже напряжения при разрыве. Процесс волочения материалов, т.е. изготовление проволоки увеличивает сопротивление на разрыв, и чем тоньше проволока, тем больше напряжения при разрыве. В золоте при его обработке обычно обнаруживается увеличение напряжения на разрыв вследствие его пластичности.

Технические свойства материалов (т.е. разрушающее напряжение, усталость, текучесть и т.д.) при нормальной или повышенной температурах.

Чтобы привести значения, выраженные в дин/см 2 , к приблизительным значениям в кгс/мм 2 , надо первые разделить на 10 8 ; чтобы привести к значениям в фунт-сила/кв.дюйм – разделить на 7*10 4 ; к значениям тонна-сила/кв.дюйм – разделить на 1,5*10 8 .

Таблица значений прочности на разрыв материалов и веществ

Материал, вещество

Прочность на разрыв 10 9 дин/см 2 .

Материал, вещество

Прочность на разрыв 10 9 дин/см 2 .

Алюминий (литой)

Кожаный ремень

Алюминий (листовой)

Пеньковая веревка

Магний (литой)

Шелковая нить

Магний (прессованный)

Кварцевая нить

Медь (литая)

Пластмассы термопластичные

Медь (листовая)

Термореактивные

Проволоки

Железо сварочное

Алюминий

Сталь литая

Сталь мягкая (0,2%С)

Медь (холоднотянутая)

Сталь рессорная

Медь (отожженная)

Сталь отпущенная

Сталь никелевая, 5% Ni

Железо (на древесном угле)

Сталь хромоникелевая

Железо холоднотянутое

Свинец (литой)

Железо отожженное

Олово (литое)

Сталь поделочная

Цинк (листовой)

Сталь отпущенная

Латунь (66% Cu) литая

Сталь холоднотянутая

Латунь (34% Cu) листовая

Бронза фосфористая (литая)

Пушечный металл (90% Cu, 10% Sn)

Мягкий припой

Неметаллы:

Бронза фосфористая

Нейзильбер

Дюралюминий

Ясень, бук, дуб, тик, красное дерево

Вольфрам

Пихта, смолистая сосна

Палладий

Красные или белые еловые доски

Молибден

Белая или желтая сосна

Цирконий отожженный

Цирконий холоднотянутый

Loading...Loading...