Пара электронных нагрузок в виде отдельных модулей. Что такое электронная нагрузка: общая информация, для чего они используются и какие бывают Токовая электронная нагрузка своими руками

Все электронщики, занимающиеся конструированием устройств электропитания, рано или поздно сталкиваются с проблемой отсутствия нагрузочного эквивалента или функциональной ограниченностью имеющихся нагрузок, а так же их габаритами. К счастью, появление на российском рынке дешевых и мощных полевых транзисторов несколько исправило ситуацию.

Стали появляться любительские конструкции электронных нагрузок на базе полевых транзисторов, более пригодных к использованию в качестве электронного сопротивления, нежели их биполярные собратья: лучшая температурная стабильность, практически нулевое сопротивление канала в открытом состоянии, малые токи управления - основные преимущества, определяющие предпочтительность их использования в качестве регулирующего компонента в мощных устройствах. Более того, самые разнообразные предложения появились от производителей приборов, прайсы которых пестрят самыми разнообразными моделями электронных нагрузок. Но, так как производители ориентируют свою весьма сложную и многофункциональную продукцию под названием "электронная нагрузка" в основном на производство, цены на эти изделия настолько высоки, что покупку может позволить себе лишь весьма состоятельный человек. Правда, не не совсем понятно, - зачем состоятельному человеку электронная нагрузка.

ЭН промышленного изготовления, ориентированного на любительский инженерный сектор, мною замечено не было. Значит, опять придется все делать самому. Э-эх... Начнем.

Преимущества электронного эквивалента нагрузки

Чем же в принципе электронные нагрузочные эквиваленты предпочтительнее традиционных средств (мощные резисторы, лампы накаливания, термонагреватели и прочие приспособления), используемых зачастую конструкторами при наладке различных силовых устройств?

Граждане портала, имеющие отношение к конструированию и ремонту блоков питания, несомненно знают ответ на этот вопрос. Лично я вижу два фактора, достаточных для того, что бы иметь в своей "лаборатории" электронную нагрузку: небольшие габариты, возможность управления мощностью нагрузки в больших пределах простыми средствами (так, как мы регулируем громкость звучания или выходное напряжение блока питания - обычным переменным резистором а не мощными контактами рубильника, движком реостата и т.д.).

Кроме того, "действия" электронной нагрузки можно легко автоматизировать, облегчив таким образом и сделав более изощренными испытания силового устройства с помощью электронной нагрузки. При этом, разумеется, освобождаются глаза и руки инженера, работа становится продуктивней. Но о прелестях всех возможных наворотов и совершенств - не в этой статье, и, быть может, от другого автора. А пока, - лишь о еще одной разновидности электронной нагрузки - импульсной.


По поводу резистора R16. При прохождении через него тока 10А, рассеиваемая на резисторе мощность составит 5Вт (при указанном на схеме сопротивлении). В реальной конструкции используется резистор сопротивлением 0,1 Ом (не оказалось нужного номинала) и мощность, рассеиваемая на его корпусе при том же токе, составит 10Вт. Температура резистора при этом гораздо выше температуры ключей ЭН, которые (при использовании радиатора, показанного на фото) греются не сильно. Поэтому термодатчик лучше установить на резисторе R16 (или в непосредственной близости), а не на радиаторе с ключами ЭН.

Еще несколько фото





Данное устройство предназначено и применяется для проверки источников питания постоянного тока, напряжением до 150В. Устройство позволяет нагружать блоки питания током до 20А, при максимальной рассеиваемой мощности до 600 Вт.

Общее описание схемы

Рисунок 1 - Принципиальная электрическая схема электронной нагрузки.

Приведенная схема на рисунке 1 позволяет плавно регулировать нагрузку испытуемого блока питания. В качестве эквивалента нагрузочного сопротивления используются мощные полевые транзисторы T1-T6 включенные параллельно. Для точного задания и стабилизации тока нагрузки, в схеме применяется прецизионный операционный усилитель ОУ1 в качестве компаратора. Опорное напряжение с делителя R16, R17, R21, R22 поступает на неинвертирующий вход ОУ1, на инвертирующий вход поступает напряжение сравнения с токоизмерительного резистора R1. Усиленная ошибка с выхода ОУ1 воздействует на затворы полевых транзисторов, тем самым стабилизируя заданный ток. Переменные резисторы R17 и R22 вынесены на лицевую панель устройства с градуированной шкалой. R17 задает ток нагрузки в пределах от 0 до 20А, R22 в пределах от 0 до 570 мА.

Измерительная часть схемы выполнена на основе АЦП ICL7107 со светодиодными цифровыми индикаторами. Опорное напряжение для микросхемы составляет 1В. Для согласования выходного напряжения токоизмерительного датчика с входом АЦП применяется неинвертирующий усилитель с регулируемым коэффициентом усиления 10-12, собранный на прецизионном операционном усилителе ОУ2. В качестве датчика тока используется резистор R1, что и в схеме стабилизации. На панели индикации отображается либо ток нагрузки, либо напряжение проверяемого источника питания. Переключение между режимами происходит кнопкой S1.

В предлагаемой схеме реализованы три вида защиты: максимальная токовая защита, тепловая защита и защита от переполюсовки.

В максимальной токовой защите предусмотрена возможность задания тока отсечки. Схема МТЗ состоит из компаратора на ОУ3 и ключа, коммутирующего цепь нагрузки. В качестве ключа используется полевой транзистор T7 с низким сопротивлением открытого канала. Опорное напряжение (эквивалент току отсечки) подается с делителя R24-R26 на инвертирующий вход ОУ3. Переменный резистор R26 вынесен на лицевую панель устройства с градуированной шкалой. Подстроечный резистор R25 задает минимальный ток срабатывания защиты. Сигнал сравнения поступает с выхода измерительного ОУ2 на неинвертирующий вход ОУ3. В случае превышения тока нагрузки заданного значения, на выходе ОУ3 появляется напряжение близкое к напряжению питания, тем самым включается динисторное реле MOC3023, которое в свою очередь запирает транзистор T7 и подает питание на светодиод LED1, сигнализирующий о срабатывании токовой защиты. Сброс происходит после полного отключения устройства от сети и повторного включения.

Тепловая защита выполнена на компараторе ОУ4, датчике температуры RK1 и исполнительном реле РЭС55А. В качестве датчика температуры используется терморезистор с отрицательным ТКС. Порог срабатывания задается подстроечным резистором R33. Подстроечный резистор R38 задает величину гистерезиса. Датчик температуры установлен на алюминиевой пластине, являющейся основанием для крепления радиаторов (Рисунок 2). В случае превышения температуры радиаторов заданного значения, реле РЭС55А своими контактами замыкает неинвертирующий вход ОУ1 на землю, в результате транзисторы T1-T6 запираются и ток нагрузки стремится к нулю, при этом светодиод LED2 сигнализирует о срабатывании тепловой защиты. После охлаждения устройства, ток нагрузки возобновляется.

Защита от переполюсовки выполнена на сдвоенном диоде Шоттки D1.

Питание схемы осуществляется от отдельного сетевого трансформатора TP1. Операционные усилители ОУ1, ОУ2 и микросхема АЦП подключены от двухполярного источника питания собранного на стабилизаторах L7810, L7805 и инверторе ICL7660.

Для принудительного охлаждения радиаторов используется в непрерывном режиме вентилятор на 220В (в схеме не указан), который подключается через общий выключатель и предохранитель напрямую к сети 220В.

Настройка схемы

Настройка схемы проводится в следующем порядке.
На вход электронной нагрузки последовательно с проверяемым блоком питания подключается эталонный миллиамперметр, например мультиметр в режиме измерения тока с минимальным диапазоном (мА), параллельно подключается эталонный вольтметр. Ручки переменных резисторов R17, R22 выкручиваются в крайнее левое положение соответствующее нулевому току нагрузки. На устройство подается питание. Далее подстроечным резистором R12 задается такое напряжение смещения ОУ1, чтобы показания эталонного миллиамперметра стали равны нулю.

Следующим этапом настраивается измерительная часть устройства (индикация). Кнопка S1 переводится в положение измерения тока, при этом на табло индикации точка должна переместиться в положение сотых. Подстроечным резистором R18 необходимо добиться, чтобы на всех сегментах индикатора, кроме крайнего левого (он должен быть неактивен), отображались нули. После этого эталонный миллиамперметр переключается в режим максимального диапазона измерений (А). Далее регуляторами на лицевой панели устройства задается ток нагрузки, подстроечным резистором R15 добиваемся одинаковых показаний с эталонным амперметром. После калибровки канала измерения тока, кнопка S1 переключается в положение индикации напряжения, точка на табло должна переместиться в положение десятых. Далее подстроечным резистором R28 добиваемся одинаковых показаний с эталонным вольтметром.

Настройка МТЗ не требуется, если соблюдены все номиналы.

Настройка тепловой защиты проводится экспериментальным путем, температурный режим работы силовых транзисторов не должен выходить за регламентируемый диапазон. Так же нагрев отдельного транзистора может быть неодинаковым. Порог срабатывания настраивается подстроечным резистором R33 по мере приближения температуры самого горячего транзистора к максимальному документированному значению.

Элементная база

В качестве силовых транзисторов T1-T6 (IRFP450) могут применяться MOSFET N-канальные транзисторы с напряжением сток-исток не менее 150В, мощностью рассеивания не менее 150Вт и током стока не менее 5А. Полевой транзистор T7 (IRFP90N20D) работает в ключевом режиме и выбирается исходя из минимального значения сопротивления канала в открытом состоянии, при этом напряжение сток-исток должно быть не менее 150В, а продолжительный ток транзистора должен составлять не менее 20A. В качестве прецизионных операционных усилителей ОУ 1,2 (OP177G) могут применяться любые аналогичные операционные усилители с двухполярным питанием 15В и возможностью регулирования напряжения смещения. В качестве операционных усилителей ОУ 3,4 применяется достаточно распространенная микросхема LM358.

Конденсаторы C2, С3, С8, C9 электролитические, C2 выбирается на напряжение не менее 200В и емкостью от 4,7µF. Конденсаторы C1, С4-С7 керамические либо пленочные. Конденсаторы C10-C17, а так же резисторы R30, R34, R35, R39-R41 поверхностного монтажа и размещаются на отдельной плате индикатора.

Подстроечные резисторы R12, R15, R18, R25, R28, R33, R38 многооборотные фирмы BOURNS типа 3296. Переменные резисторы R17, R22 и R26 отечественные однооборотные типа СП2-2, СП4-1. В качестве токоизмерительного резистора R1 использован шунт, выпаянный из нерабочего мультиметра, сопротивлением 0,01 Ом и рассчитанный на ток 20А. Постоянные резисторы R2-R11, R13, R14, R16, R19-R21, R23, R24, R27, R29, R31, R32, R36, R37 типа МЛТ-0,25, R42 - МЛТ-0,125.

Импортная микросхема аналого-цифрового преобразователя ICL7107 может быть заменена на отечественный аналог КР572ПВ2. Вместо светодиодных индикаторов BS-A51DRD могут применяться любые одиночные или сдвоенные семисегментные индикаторы с общим анодом без динамического управления.

В схеме тепловой защиты используется отечественное слаботочное герконовое реле РЭС55А(0102) с одним перекидным контактом. Реле выбирается с учетом напряжения срабатывания 5В и сопротивления катушки 390 Ом.

Для питания схемы может быть применен малогабаритный трансформатор на 220В, мощностью 5-10Вт и напряжением вторичной обмотки 12В. В качестве выпрямительного диодного моста D2 может использоваться практический любой диодный мост с током нагрузки не менее 0,1A и напряжением не менее 24В. Микросхема стабилизатора тока L7805 устанавливается на небольшой радиатор, приблизительная мощность рассеивания микросхемы 0,7Вт.

Конструктивные особенности

Основание корпуса (рисунок 2) изготовлено из алюминиевого листа толщиной 3мм и уголка 25мм. К основанию прикручиваются 6 алюминиевых радиаторов, ранее применявшихся для охлаждения тиристоров. Для улучшения теплопроводности используется термопаста Алсил-3.

Рисунок 2 - Основание.

Общая площадь поверхности собранного таким образом радиатора (рисунок 3) составляет около 4000 см2. Приблизительная оценка мощности рассеивания взята из расчета 10см2 на 1Вт. С учетом применения принудительного охлаждения с использованием 120мм вентилятора производительностью 1,7 м3/час, устройство способно продолжительно рассеивать до 600Вт.

Рисунок 3 - Радиатор в сборе.

Силовые транзисторы T1-T6 и сдвоенный диод Шоттки D1, у которого основанием является общий катод, крепятся к радиаторам напрямую без изоляционной прокладки с использованием термопасты. Транзистор T7 токовой защиты крепится к радиатору через теплопроводящую диэлектрическую подложку (рисунок 4).

Рисунок 4 - Крепление транзисторов к радиатору.

Монтаж силовой части схемы выполнен термостойким проводом РКГМ, коммутация слаботочной и сигнальной части выполнена обычным проводом в ПВХ изоляции с применением термостойкой оплетки и термоусадочной трубки. Печатные платы изготовлены методом ЛУТ на фольгированном текстолите, толщиной 1,5 мм. Компоновка внутри устройства изображена на рисунках 5-8.

Рисунок 5 - Общая компоновка.

Рисунок 6 - Главная печатная плата, крепление трансформатора с обратной стороны.

Рисунок 7 - Вид в сборе без кожуха.

Рисунок 8 - Вид в сборе сверху без кожуха.

Основа передней панели изготовлена из электротехнического листового гетинакса толщиной 6мм фрезерованного под крепления переменных резисторов и затемненного стекла индикатора (рисунок 9).

Рисунок 9 - Основа передней панели.

Декоративный внешний вид (рисунок 10) выполнен с использованием алюминиевого уголка, вентиляционной решетки из нержавеющей стали, оргстекла, подложки из бумаги с надписями и градуированными шкалами, скомпилированными в программе FrontDesigner3.0. Кожух устройства изготовлен из миллиметрового листа нержавеющей стали.

Рисунок 10 - Внешний вид готового устройства.

Рисунок 11 - Схема соединений.

Архив для статьи

Если у Вас возникнут какие либо вопросы по конструкции электронной нагрузки, задавайте их на форуме, постараюсь помочь и ответить.

Краткое вступление

При тестировании вторичных источников электропитания (преобразователей напряжения, блоков питания и др.) и некоторых типов первичных источников электропитания (аккумуляторов, солнечных батарей и др.) широко используются электронные нагрузки . Этот материал поможет получить основные сведения о современных электронных нагрузках, их разновидностях и решаемых с их помощью задачах.

Общая информация об электронных нагрузках

Электронная нагрузка - это прибор, предназначенный для имитации различных режимов работы реальной электрической нагрузки. При этом электронная нагрузка может работать в нескольких режимах потребления. К наиболее распространённым относятся: режим постоянного сопротивления , режим постоянного тока потребления , режим постоянной мощности и режим стабилизации напряжения . Также большинство моделей электронных нагрузок поддерживают режим изменения своего состояния по списку заданных пользователем значений, что позволяет реализовать сложные алгоритмы тестов, максимально соответствующие работе проверяемых устройств в реальных условиях.

Для чего используются электронные нагрузки

Основная задача электронных нагрузок - это тестирование различных источников электропитания: аккумуляторов, батареек, блоков питания, преобразователей напряжения, регуляторов и стабилизаторов напряжения, солнечных батарей, генераторов и других подобных устройств. Для проведения тестирования, электронную нагрузку подключают к проверяемому источнику электропитания и запускают один или несколько тестов. При этом, электронная нагрузка ведёт себя как реальная нагрузка: например меняет своё сопротивление по заданному алгоритму, имитирует большие стартовые токи запуска, короткое замыкание и прочие заданные Вами условия. Во время проведения теста, электронная нагрузка непрерывно измеряет напряжение, ток и потребляемую мощность.

Большинство электронных нагрузок содержат точный мультиметр, измеряющий напряжение, ток и мощность, потребляемую нагрузкой. Некоторые модели могут выполнять нормированный разряд аккумуляторов и батареек, измеряя реальную ёмкость элемента питания в Ампер-часах. Многие модели также могут управляться при помощи компьютера, что позволяет использовать их в составе автоматизированных контрольно-измерительных комплексов.

Какие бывают электронные нагрузки

Большинство серий электронных нагрузок предназначены для тестирования источников питания постоянного тока (аккумуляторов, блоков питания, солнечных батарей и др.), типичные примеры: серия ITECH IT8500+ и серия ITECH IT8800 . Для тестирования источников питания переменного тока (инверторов, источников бесперебойного питания, трансформаторов и др.) выпускаются специализированные AC/DC электронные нагрузки переменного и постоянного тока, типичный пример: серия ITECH IT8615 .

Конструктивно серийные электронные нагрузки изготавливаются в приборных корпусах. Размер и масса корпуса напрямую зависят от максимальной мощности, которую может рассеивать нагрузка. Самые маломощные модели могут рассеивать около 100 Вт и помещаются в небольших компактных корпусах, как например модель IT8211 рассчитанная на 150 Вт.

Типичная маломощная электронная нагрузка
(модель ITECH IT8211, максимальная мощность 150 Вт).

Типичная мощная электронная нагрузка
(модель ITECH IT8818B, максимальная мощность 5 кВт).

Также выпускаются модели, которые могут рассеивать десятки и даже сотни киловатт. Чтобы увидеть варианты конструктивного исполнения электронных нагрузок разной мощности, посмотрите серию ITECH IT8800 .

Иногда, для удешевления, вместо электронной нагрузки используют реостат (мощный переменный резистор). Использование реостата при тестировании силовых устройств связано с такими ограничениями:
- отсутствие режима постоянного тока потребления;
- отсутствие режима постоянной мощности;
- отсутствие режима стабилизации напряжения;
- отсутствие режима изменения состояния по списку заданных значений;
- отсутствие автоматизации работы;
- значительная индуктивность реостата;
- необходимость использовать дополнительный вольтметр и амперметр.
Поэтому вместо устаревших методов тестирования, эффективнее и в конечном итоге дешевле применять современную контрольно-измерительную аппаратуру, специально разработанную под конкретную задачу.

Использование хорошей электронной нагрузки позволяет существенно упростить и ускорить процесс тестирования любых источников электропитания, а также сделать этот процесс безопасным и эффективным.

Видеообзор электронных нагрузок

В этом видеосюжете мы рассмотрим общую информацию о том, что такое электронные нагрузки, для чего они используются и какие бывают.

Основные сведения об электронных нагрузках и решаемых с их помощью задачах.

Если Вам необходима подробная информация по ценам или техническая консультация по выбору оптимальной электронной нагрузки для Вашей задачи, просто позвоните нам или напишите нам по и мы с радостью ответим на Ваши вопросы.

Понадобилось мне нагрузить импульсный источник питания, а нечем,полазил по своим закромам, нашел нихром ну и всякую ерунду в виде древних сапротов....Попробовал нагрузить источник как то не гибко получается и решился спаять электронную нагрузку как говорится на века... Схем в интернете оказалось много от простых ну и по сложнее..В итоге небольших мучений родилось сие чудо...В ходе первых испытаний оказалось что греется радиатор и весьма существенно.. И тут пришла идея применить ранее мною изготовленное Устройство контроля температурного режима, управления охлаждением и термо защиты на PIC12F629 ...когда то делал для лабораторника... Схема есть на нашем сайте... И все заработало завертелось...

Схема нагрузки.

Для повышения стабильности работы регулирующей микросхемы LM358 ,необходимо соеденитьмежду собой выводы микросхемы 6 и 7 ,а вывод 5 соединить с землей...

Схема контроля температуры.

При включении питания - кратковременно включается вентилятор и проверяется его исправность (по сигналу датчика тахогенератора), если вентилятор исправен и температура в норме - включается реле, подавая питание на контролируемое устройство. По мере прогрева нагрузки (около 50 градусов) - включается вентилятор, а если температура упала ниже 45 градусов - кулер выключается. Т.е. имеется гистерезис в 5 градусов. Когда температура достигнет 75 градусов - срабатывает термозащита, нагрузка отключается, а если зафиксирована неисправность вентилятора - то термозащита срабатывает уже при 60 градусах. Если сработала термозащита - то обратного включения нагрузки не происходит, как бы оно не остыло. Кулер же будет продолжать работать в штатном режиме, т.е. будет охлаждать радиаторы и выключится, когда температура упадет ниже +45 градусов. Для сброса термозащиты требуется отключить и снова включить питание контроллера.

Ну фотки...

Индикатор использовал покупной до 10 ампер...События показали что индикатор нужен до 20 ампер...

Корпус взят от старого компового блока питания..

Транс питания схемы от китайского древнего мафона,радиатор с кулером от пенька четвертого если не ошибаюсь...

Ну и куча кирпичей в виде сапротов нагрузки...

При работе нагрузки в 18 ампер нагрев деталей был в рабочих температурах...Замерял мультиметром и электроным термометром...

Показания приборов у всех разное одним словом китай...На нагрузке показания амперметра более точные по сравнении с блоком питания проверял мультиметром...

Возникнут вопросы отвечу...Остальное все в архиве... Все схемы взяты из интернета на авторство не претендую,схемы перерабатывал под свои нужды....

АРХИВ:

При тестировании мощных блоков питания используется электронная нагрузка, например, для принудительной установки заданного тока. На практике часто применяются лампы накаливания (что является плохим решением из-за низкого сопротивления холодной нити) или резисторы. На сайтах интернет-магазинов доступен для покупки модуль электронной нагрузки (по цене около 600 рублей).

Такой модуль имеет следующие параметры: максимальная мощность 70 Вт, длительная мощность 50 Вт, максимальный ток 10 А, максимальное напряжение 100 В. На плате имеется измерительный резистор (в виде изогнутого провода), транзистор IRFP250N, TL431, LM258, LM393. Чтобы запустить модуль искусственной нагрузки необходимо закрепить транзистор на радиаторе (лучше оснастить вентилятором), включить потенциометр, обеспечивающий регулировку тока и подключить источник питания 12 В. Вот упрощенная структурная схема:

Разъем V- V+ используется для подключения проводов, соединяющих испытуемое устройство, последовательно с этой цепи стоит включить амперметр для контроля заданного тока.

Питание подводится на разъем J3, само устройство потребляет ток 10 мА (не считая потребления тока вентилятора). Потенциометр подключаем к разъему J4 (PA).

Вентилятор на 12 В можно подключить к разъему J1 (FAN), на этом разъеме присутствует напряжение питания с разъема J3.

На разъеме J2 (VA) есть напряжение на клеммах V- V+, можем подключить здесь вольтметр и проверить, что за напряжение на выходе нагрузки источника питания.

При токе 10 А, ограничение непрерывной мощности до 50 Вт приводит к тому, что напряжение на входе не должно превышать 5 В, для мощности 75 Вт, напряжение 7.5 В соответственно.

После тестирования с блоком питания в качестве источника напряжения подключили аккумулятор с напряжением 12 В, чтобы не превышать 50 Вт — ток не должен быть больше 4 A, для мощности 75 Вт — 6 A.

Уровень колебаний напряжения на входе модуля является вполне приемлемым (согласно осциллограммы).

Схема принципиальная эл. нагрузки

Это не 100% точная схема, но вполне похожая и неоднократно собранная людьми. Есть и рисунок печатной платы.

Принцип действия

Транзистор — МОП-транзистор с каналом N-типа, с большим током Id и мощностью Pd и меньшим сопротивлением RDSON. От его параметров будут зависеть предельные токи и напряжения работы блока искусственной нагрузки.

Был использован транзистор NTY100N10, его корпус to-264 обеспечивает хорошее тепловыделение, а его максимальная мощность рассеивания 200 Вт (зависит от радиатора, на котором его разместим).

Вентилятор также необходим, для его управления применен термистор RT1 — при температуре 40 oC он отключает питание и опять включает когда температура радиатора превышает 70 oC. При нагрузке 20 А, резистор должен иметь мощность 40 Вт и быть хорошо охлажден.

Для измерения тока использован амперметр на популярной микросхеме ICL7106. Схема не требует настройки, после правильной сборки работает сразу. Нужно только подобрать R02 чтобы минимальный ток составлял 100 мА, также можно выбрать значение R01 чтобы максимальный ток не превышал 20 А.

Loading...Loading...