Преобразователь напряжения. Преобразователь напряжения: назначение, описание Назначение и принцип работы

Для преобразования постоянного тока в переменный применяют специальные электронные силовые устройства, называемые инверторами. Чаще всего инвертор преобразует постоянное напряжение одной величины в переменное напряжение другой величины.

Таким образом, инвертор - это генератор периодически изменяющегося напряжения, при этом форма напряжения может быть синусоидальной, приближенной к синусоидальной или импульсной . Инверторы применяют как в качестве самостоятельных устройств, так и в составе систем бесперебойного электроснабжения (UPS).

В составе источников бесперебойного питания (ИБП), инверторы позволяют, например, получить непрерывное электроснабжение компьютерных систем, и если в сети напряжение внезапно пропадет, то инвертор мгновенно начнет питать компьютер энергией, получаемой от резервного аккумулятора. По крайней мере, пользователь успеет корректно завершить работу и выключить компьютер.

В более крупных устройствах бесперебойного электроснабжения применяются более мощные инверторы с аккумуляторами значительной емкости, способные автономно питать потребители часами, независимо от сети, а когда сеть снова вернется в нормальное состояние, ИБП автоматически переключит потребители напрямую к сети, а аккумуляторы начнут заряжаться.


Техническая сторона

В современных технологиях преобразования электроэнергии инвертор может выступать лишь промежуточным звеном, где его функция - преобразовать напряжение путем трансформации на высокой частоте (десятки и сотни килогерц). Благо, на сегодняшний день решить такую задачу можно легко, ведь для разработки и конструирования инверторов доступны как полупроводниковые ключи, способные выдерживать токи в сотни ампер, так и магнитопроводы необходимых параметров, и специально разработанные для инверторов электронные микроконтроллеры (включая резонансные).

Требования к инверторам, как и к другим силовым устройствам, включают: высокий КПД, надежность, как можно меньшие габаритные размеры и вес. Также необходимо чтобы инвертор выдерживал допустимый уровень высших гармоник во входном напряжении, и не создавал неприемлемо сильных импульсных помех для потребителей.

В системах с «зелеными» источниками электроэнергии (солнечные батареи, ветряки) для подачи электроэнергии напрямую в общую сеть, применяют Grid-tie – инверторы, способные работать синхронно с промышленной сетью.

В процессе работы инвертора напряжения, источник постоянного напряжения периодически подключается к цепи нагрузки с чередованием полярности, при этом частота подключений и их продолжительность формируется управляющим сигналом, который поступает от контроллера.

Контроллер в инверторе обычно выполняет несколько функций: регулировка выходного напряжения, синхронизация работы полупроводниковых ключей, защита схемы от перегрузки. Принципиально инверторы делятся на: автономные инверторы (инверторы тока и инверторы напряжения) и зависимые инверторы (ведомые сетью, Grid-tie и т.д.)

Схемотехника инверторов

Полупроводниковые ключи инвертора управляются контроллером, имеют обратные шунтирующие диоды. Напряжение на выходе инвертора, в зависимости от текущей мощности нагрузки, регулируется автоматическим изменением ширины импульса в блоке высокочастотного преобразователя, в простейшем случае это .

Полуволны выходного низкочастотного напряжения должны быть симметричными, чтобы цепи нагрузки ни в коем случае не получили значительной постоянной составляющей (для трансформаторов это особенно опасно), для этого ширина импульса НЧ-блока (в простейшем случае) делается постоянной.

В управлении выходными ключами инвертора, применяется алгоритм, обеспечивающий последовательную смену структур силовой цепи: прямая, короткозамкнутая, инверсная.

Так или иначе, величина мгновенной мощности нагрузки на выходе инвертора имеет характер пульсаций с удвоенной частотой, поэтому первичный источник должен допускать такой режим работы, когда через него текут пульсирующие токи, и выдерживать соответствующий уровень помех (на входе инвертора).

Если первые инверторы были исключительно механическими, то сегодня есть множество вариантов схем инверторов на полупроводниковой базе, а типовых схем всего три: мостовая без трансформатора, двухтактная с нулевым выводом трансформатора, мостовая с трансформатором.

Мостовая схема без трансформатора встречается в устройствах бесперебойного питания мощностью от 500 ВА и в автомобильных инверторах. Двухтактная схема с нулевым выводом трансформатора используется в маломощных ИБП (для компьютеров) мощностью до 500 ВА, где напряжение на резервном аккумуляторе составляет 12 или 24 вольта. Мостовая схема с трансформатором применяется в мощных источниках бесперебойного питания (на единицы и десятки кВА).

В инверторах напряжения с прямоугольной формой на выходе, группа ключей с обратными диодами коммутируется так, чтобы получить на нагрузке переменное напряжение и обеспечить контролируемый режим циркуляции в цепи .

За пропорциональность выходного напряжения отвечают: относительная длительность управляющих импульсов либо сдвиг фаз между сигналами управления группами ключей. В неконтролируемом режиме циркуляции реактивной энергии, потребитель влияет на форму и величину напряжения на выходе инвертора.


В инверторах напряжения со ступенчатой формой на выходе, предварительный высокочастотный преобразователь формирует однополярную ступенчатую кривую напряжения, грубо приближенную по своей форме к синусоиде, период которой равен половине периода выходного напряжения. Затем мостовая НЧ-схема превращает однополярную ступенчатую кривую в две половинки разнополярной кривой, грубо напоминающей по форме синусоиду.

В инверторах напряжения с синусоидальной (или почти синусоидальной) формой на выходе, предварительный высокочастотный преобразователь генерирует постоянное напряжение близкое по величине к амплитуде будущей синусоиды на выходе.

После этого мостовая схема формирует из постоянного напряжения переменное низкой частоты, путем многократной ШИМ, когда каждая пара транзисторов на каждом полупериоде формирования выходной синусоиды открывается несколько раз на время, изменяющееся по гармоническому закону. Затем НЧ-фильтр выделяет из полученной формы синус.


Простейшие схемы предварительного высокочастотного преобразования в инверторах являются автогенераторными. Они довольно просты в плане технической реализации и достаточно эффективны на малых мощностях (до 10-20 Вт) для питания нагрузок не критичных к процессу подачи энергии. Частота автогенераторов не более 10 кГц.

Положительная обратная связь в таких устройствах получается от насыщения магнитопровода трансформатора. Но для мощных инверторов такие схемы не приемлемы, поскольку потери в ключах возрастают, и КПД получается в итоге низким. Тем более, любое КЗ на выходе срывает автоколебания.

Более качественные схемы предварительных высокочастотных преобразователей - это обратноходовые (до 150 Вт), двухтактные (до 500 Вт), полумостовые и мостовые (более 500 Вт) на ШИМ контроллерах, где частота преобразования достигает сотен килогерц.

Типы инверторов, режимы работы

Однофазные инверторы напряжения подразделяются на две группы: с чистым синусом на выходе и с модифицированной синусоидой. Большинство современных приборов допускают упрощенную форму сетевого сигнала (модифицированную синусоиду).

Чистая же синусоида важна для приборов, у которых на входе есть электродвигатель или трансформатор, либо если это специальное устройство, работающее только с чистой синусоидой на входе.

Трёхфазные инверторы обычно используются для создания трёхфазного тока для электродвигателей, например, для питания . При этом обмотки двигателя непосредственно подключаются к выходу инвертора. По мощности инвертор выбирают исходя из пикового значения оной для потребителя.

Вообще, существует три рабочих режима инвертора: пусковой, длительный и режим перегрузки. В пусковом режиме (заряд емкости, пуск холодильника) мощность может на долю секунды двукратно превысить номинал инвертора, это допустимо для большинства моделей. Длительный режим - соответствующий номиналу инвертора. Режим перегрузки - когда мощность потребителя в 1,3 раза превышает номинал - в таком режиме средний инвертор может работать примерно полчаса.

    Электротехническое изделие (устройство), преобразующее электрическую энергию с одними значениями параметров и (или) показателей качества в электрическую энергию с другими значениями параметров и (или) показателей качества. Примечание.… …

    Преобразователь электрической энергии - 4. Преобразователь электрической энергии Converter Преобразователь электроэнергии Электротехническое изделие (устройство), преобразующее электрическую энергию с одними значениями параметров и (или) показателей качества в электрическую энергию с… …

    преобразователь электрической энергии, - 2 преобразователь электрической энергии, преобразователь электроэнергии: Электротехническое устройство, преобразующее электрическую энергию с одними значениями параметров и/или показателей качества в электрическую энергию с другими значениями… … Словарь-справочник терминов нормативно-технической документации

    Преобразователь электрической энергии - – электротехническое изделие (устройство), преобразующее электрическую энергию с одними значениями параметров и (или) показателей качества в электрическую энергию с другими значениями параметров и (или) показателей качества. ГОСТ 18311 80 … Коммерческая электроэнергетика. Словарь-справочник

    Преобразователь электрической энергии - 1. Электротехническое изделие (устройство), преобразующее электрическую энергию с одними значениями параметров и (или) показателей качества в электрическую энергию с другими значениями параметров и (или) показателей качества Употребляется в… … Телекоммуникационный словарь

    Преобразователь электрической энергии (Преобразователь электроэнергии) - English: Electricity converter Электротехническое изделие (устройство), преобразующее электрическую энергию с одними значениями параметров и (или) показателей качества в электрическую энергию с другими значениями параметров и (или) показателей… … Строительный словарь

    ГОСТ Р 54130-2010: Качество электрической энергии. Термины и определения - Терминология ГОСТ Р 54130 2010: Качество электрической энергии. Термины и определения оригинал документа: Amplitude die schnelle VergroRerung der Spannung 87 Определения термина из разных документов: Amplitude die schnelle VergroRerung der… … Словарь-справочник терминов нормативно-технической документации

    Преобразователи тепловой энергии плазмы в электрич. энергию. Существуют два типа П. и. э. э. магнитогидродинамический генератор и термоэлектронный преобразователь. Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор … Физическая энциклопедия

    Преобразователи тепловой энергии плазмы (См. Плазма) в электрическую энергию. Существует 2 типа П. и. э. э. Магнитогидродинамический генератор и Термоэлектронный преобразователь … Большая советская энциклопедия

    преобразователь частоты - преобразователь частоты Преобразователь электрической энергии переменного тока, который преобразует электрическую энергию с изменением частоты [ОСТ 45.55 99] EN frequency converter electric energy… … Справочник технического переводчика

Инвертор – преобразует постоянный ток в переменный.

Конвертор – преобразователь постоянного напряжения в постоянное, но другого уровня (с промежуточным преобразованием входного напряжения в переменное и трансформацией к нужному уровню).

Центральным звеном является преобразователь постоянного напряжения в переменное.

Применяют различные схемы таких устройств:

Транзисторные и на электронных лампах;

Построенные на транзисторах с насыщающимися сердечниками;

Релаксационные генераторы, триггеры, мультивибраторы;

По однотактной, двухтактной и мостовой схемах;

Тиристорные простые и мостовые схемы (в мощных устройствах).

6.1 Простая схема двухтактного тиристорного инвертора.

Рис. 6.1 - простая схема двухтактного тиристорного инвертора

От Т2 поступают импульсы управления в цепь тиристоров.

От постоянного источника напряжение поступает на вход схемы. Оно проходит через на анодыVD.

заряжается до двойного входного напряжения. Если теперь подать импульсы на VD2, сразу закрывается VD1,
перезаряжается, все знаки в Т1 поменяются на противоположные и ток потечет черезVD2.

Как видно из работы схемы, на коммутирующей емкости
в момент закрытия тиристора действует напряжение равное удвоенному напряжению питания, что является недостатком для схемы.

Его устраняет мостовая схема тиристорного инвертора.

6.2 Мостовая схема тиристорного инвертора.

Рис. 6.2 - Мостовая схема тиристорного инвертора

Схема управления открывает сначала VD1 и VD4, а потом, когда емкость зарядится до , в этот момент, если открыть другие тиристоры,VD1 и VD4 мгновенно закроются.

В данной схеме на закрытых тиристорах действует лишь напряжение источника питания.

Тиристорные выпрямители являются эффективными перспективными инверторами. Применяются на значительной мощности и используются в настоящее время для замены электромашинных агрегатов, преобразующих энергию постоянного тока резервных аккумуляторных батарей в переменный ток, в устройствах гарантированного питания (УГП) аппаратуры на предприятиях связи.

Преобразователи постоянного напряжения.

Часто при питании электронных устройств ИП являются низковольтными, а для питания цепей потребления требуются значительные напряжения. При этом прибегают к преобразованию напряжения. Для этого используют инверторы и конверторы. Используются электромагнитные преобразователи, вибропреобразователи и статические преобразователи на п/п приборах.

Электромагнитные преобразователи вырабатывают напряжение синусоидальной формы, в то время как полупроводниковые и вибропреобразователи – напряжение прямоугольной формы. В настоящее время имеются статические преобразователи с выходным напряжением по форме близким к синусоидальному. Недостаток электромагнитного преобразователя: большие габариты и масса. Вибропреобразователи – маломощные и малонадежные. Поэтому наибольшее применение находят полупроводниковые преобразователи с малыми габаритами и массой, высоким КПД и эксплуатационной надежностью.

Построение преобразователей на тиристорах и транзисторах следует связывать с величиной питающих напряжений, требуемой мощности, характером изменения нагрузки.

Поступающая по линиям электропередач энергия не всегда используется в чистом виде. Для выполнения специфических задач она преобразуется электротехническими устройствами, изменяющими один или несколько параметров – вид напряжения, частоту и другие.

Преобразователи электроэнергии: классификация

Эти устройства классифицируются по нескольким признакам:

  1. Виду преобразований.
  2. Типу конструкции.
  3. Управляемости.

Параметры, которые изменяются

Преобразованию подвергаются следующие параметры:

  1. Тип напряжения – из переменного в постоянное и наоборот.
  2. Амплитудные значения тока и напряжения.
  3. Частота.

Типы конструкций

Эти устройства подразделяются на электромашинные и полупроводниковые.

Электромашинные (вращательные) состоят из двух машин, одна – привод, а другая – исполнительное устройство. Например, для превращения переменного тока в постоянный используется асинхронный двигатель переменного тока (привод) и генератор постоянного (исполнитель). Их недостаток – большие габариты и масса. Кроме того, суммарный КПД технологической связки ниже, чем у одиночной электрической машины.

Полупроводниковые (статические) преобразователи, строятся на основе электротехнических схем, состоящих из полупроводниковых или ламповых элементов. Их КПД выше, размеры и масса небольшие, но качество электроэнергии на выходе невысокое.

Управляемые и неуправляемые

Если величина изменения параметра электрической энергии фиксированная, то используется неуправляемый преобразователь. Такие устройства применяются в первых каскадах блоков питания. Пример – силовой трансформатор, понижающий сетевое напряжение с 220 до 12 вольт.

Преобразователи с изменяемыми параметрами являются исполнительными устройствами в управляемых электротехнических цепях. Например, изменяя частоту питающего напряжения, регулируют частоту вращения асинхронных двигателей.

Преобразователи электроэнергии: примеры устройств

Преобразователи могут выполнять либо какую-то одну функцию, либо несколько.

Изменение типа напряжения

Те устройства, которые превращают переменный ток в постоянный называются выпрямителями. Действующие наоборот – инверторами.

Если это электромашинное устройство, то выпрямитель состоит из асинхронного двигателя переменного тока, вращающего ротор генератора постоянного. Входные и выходные линии электрического контакта не имеют.

Наиболее распространенных тип схемы статического выпрямителя – диодный мост. В нем четыре элемента (диода) с односторонней проводимостью, включенные встречно. После него обязательно ставят электролитический конденсатор, который сглаживает пульсирующее напряжение.

Существует гибридная конструкция, объединяющая электромашинный и статический выпрямители. Это автомобильный генератор, являющийся машиной переменного тока, статорные обмотки которого подключены к выпрямительному мосту с конденсатором.

Инверторные схемы применяются для запуска генератора незатухающих колебаний (мультивибратор), построенного на тиристорах или транзисторах. Они являются основой преобразователей частоты.

Изменение амплитудных значений

Это все виды трансформаторов – понижающих, повышающих, балластных.

Управляемые трансформаторы называются реостатами. Если они включаются параллельно источнику электроэнергии, то изменяют напряжение. Последовательно – ток.

Для поглощения тепла, выделяющегося при работе мощных высоковольтных сетевых трансформаторов, применяются системы жидкостного (масляного) охлаждения.

Изменение частоты

Частотные преобразователи бывают как электромашинными (вращательными), так и статическими.

Исполнительным механизмом вращательных преобразователей частоты является высокочастотный асинхронный трехфазный генератор. Его ротор вращает электромотор постоянного или переменного тока. Как и у выпрямителя вращательного типа, входные и выходные линии у него не имеют электрического контакта.

Инверторные схемы, используемые в преобразователях частоты статического типа, бывают управляемые и неуправляемые. Повышение частоты позволяет уменьшить габариты устройств. Трансформатор с рабочей частотой в 400 Гц в восемь раз меньше, чем работающий от 50 Гц. Это свойство используется для построения компактных сварочных инверторов.

Широко распространённые в повседневной практике преобразователи напряжения – это специализированные устройства, предназначенные для корректировки размаха и частоты выходного питающего напряжения. Электронные системы этого типа позволяют регулировать выходные параметры (включая частоту выходного напряжения).

Необходимость в их применении возникает в том случае, когда приходится подключать устройства с нестандартными входными характеристиками. Преобразовательные схемы могут выполняться в виде самостоятельного блока либо интегрироваться в действующую систему бесперебойного питания. Эти приборы пользуются повышенным пользовательским спросом, а также широко применяются для решения отдельных производственных задач.

Конструкция

Для изменения уровня действующего напряжения питания чаще всего применяются специализированные импульсные преобразователи со встроенными в них индуктивными схемами. В соответствии со стоящей перед ними задачей, все известные модели преобразовательных устройств делятся на следующие классы:

  • Инвертирующие схемы;
  • Повышающие электронные агрегаты;
  • Понижающие преобразователи.

Независимо от вида этих устройств, все они работают по одному и тому же принципу, обеспечивая требуемую функциональность и качество формируемых сигналов. Одинаковость устройств этого класса чаще всего выявляется по следующим характерным признакам:

  • Наличие собственного модуля питания;
  • Входящие в состав схемы элементы коммутации, представленные мощными полупроводниковыми транзисторами;
  • Накопители энергии в виде отдельного дросселя или катушки;
  • Фильтрующие конденсаторы, подключаемые в параллель нагрузочному сопротивлению;
  • Специальные диоды, используемые в качестве блокирующего элемента.

Применение всех перечисленных выше элементов в нужных сочетаниях предоставляет возможность получения любой из известных категорий импульсных устройств.

Принцип действия

В основу работы импульсных преобразователей заложен принцип регулировки уровня сигнала путём изменения ширины импульсов, управляющих работой коммутирующего элемента.

Обратите внимание! Этот метод электронного управления параметрами сигнала встречается в различных образцах современной аппаратуры и называется широтно-импульсным.

Для стабилизации режима работы в электрическую схему вводится обратная связь, за счёт которой при колебаниях выходного напряжения параметры рабочих импульсов также меняются.

Простейшие преобразователи напряжения содержат в своей основе обычный трансформатор, на выходе которого формируется напряжение с амплитудой, отличной от входного значения.

Известны иные типы преобразовательных устройств, работающих по принципу, схожему с уже описанными ранее образцами, но несколько отличающихся по своей конструкции. Они, как правило, выполняются на основе полупроводников и позволяют получить высокие показатели эффективности преобразования (большой КПД).

Классификация импульсных преобразователей

Выпускаемые отечественной промышленностью импульсные преобразователи, в соответствии с токовыми параметрами, подразделяются на следующие классы:

  • Электронные конверторы, обеспечивающие преобразование переменного уровня (АС) в постоянный выходной сигнал (DC). Они рассчитаны для промышленного применения и используются в системах, где требуются пониженные значения питающего напряжения 380/220 Вольт;
  • Инверторы, выполняющие обратное преобразование: входной (DC) сигнал в выходной (АС). Эти устройства востребованы в системах бесперебойного питания, а также в электронных сварочных агрегатах, в которых в результате инвертирования удаётся уменьшить габариты и вес прибора;
  • Конверторные устройства постоянного напряжения или тока, позволяющие преобразовывать одну величину питающего параметра в другую.

Эти устройства нередко используются для организации питания аккумуляторных батарей при необходимости подключать к ним нагрузки с различными номиналами напряжений.

Состав преобразователя

В состав конструкции импульсных устройств обычно входят следующие функциональные узлы:

  • Встроенный генератор импульсного сигнала, работающий от собственного блока питания (БП);
  • Импульсный трансформатор, преобразующий сигналы заданной периодичности в выходные импульсы более высокой частоты;
  • Встроенные стабилизаторы, обеспечивающие постоянство параметров сигналов, получаемых на выходе устройств;
  • Электронные коммутаторы на мощных транзисторных элементах, работающие в импульсном режиме, близком к состоянию насыщения.

К этому перечню следует добавить накопительные индуктивности, используемые при построении генераторных схем. Они обычно входят в состав таких широко распространённых устройств, как преобразователь тока.

Типичным представителем комплектующих элементов является трансформатор, обеспечивающий преобразование напряжения с минимальными потерями мощности. Они широко применяются при построении самых разнообразных радиоэлектронных и электротехнических схем.

Достоинства и недостатки преобразовательных устройств

К числу достоинств большинства известных моделей преобразующих устройств относятся:

  • Высокая эффективность преобразования стандартных сетевых напряжений в удобный для пользователя вид с одновременным контролем их основных параметров;
  • Компактность и мобильность отдельных образцов инверторных аппаратов, допускающая применение их в качестве автомобильных преобразователей;
  • Хорошие показатели экономичности с КПД, приближающимся к 90%;
  • Универсальность и надёжность преобразовательных устройств, обеспечивающая возможность подключения любых видов потребителей;
  • Возможность компенсации потерь электроэнергии за счёт повышения выходного напряжения.

Важно! Перечисленные преимущества преобразующих приборов позволяют устанавливать их в наиболее ответственных узлах охранных и осветительных систем, а также в модулях управления работой котлов отопления, насосных станций и другого специального оборудования.

К достоинствам этих устройств также следует отнести наличие таких дополнительных опций, как возможность переключения индикаторов измеряемых величин с входного на выходное напряжение. Добавим к этому допустимость подстройки в определённых пределах контролируемых выходных параметров.

К вполне устранимым недостаткам преобразователей данного класса следует отнести чувствительность к эксплуатации в условиях повышенной влажности (это не касается моделей, выпускаемых во влагозащитном исполнении). Добавим к этому высокую стоимость преобразующих систем.

Применение преобразователей в быту

Универсальные модели относятся к категории наиболее сложных устройств, которые способны регулировать несколько параметров (ток, напряжение и частоту) сразу. Но в повседневной практике вполне хватает более простых образцов преобразователей, в которых регулируется только один из входных показателей.

Дополнительная информация. Схема управления напряжением и током, осуществляемого с целью ограничения одного из этих параметров (обычно тока), широко применяется в схемах зарядки аккумуляторов. В более сложных устройствах этого класса могут использоваться современные микроконтроллеры.

В заключение обзора необходимо отметить, что существует множество вариантов исполнения импульсных преобразовательных модулей. Но, независимо от типа и сложности электронного устройства, лежащие в его основе принципы функционирования не меняются. Усвоив основные технические приёмы построения этих приборов, можно научиться обращаться с оборудованием любой сложности, а также успешно ремонтировать его в случае поломки.

Видео

Loading...Loading...