Как технологии накопления энергии изменят мир. Топ лучших технологий хранения энергии В чем сохранить электрическую энергию

Бурное развитие рынка систем солнечных батарей для частных домохозяйств и малых бизнесов наблюдается уже несколько лет. По логике вещей, следовало ожидать также заметного оживления на рынке мощных аккумуляторов, позволяющих запасать электричество. Однако, в этой области наблюдалось затишье, вплоть до 2015 года, когда компания Tesla провела презентацию своей батареи Powerwall. Вскоре стали подтягиваться конкуренты, в отрасли начался стремительный рост числа игроков.

В Анахайме (Калифорния) прошла международная выставка Solar Power Int., на ней свои новые разработки представил ряд молодых компаний. Технологический стартап под названием SimpliPhi Power презентовал батарею повышенной мощности, ориентированную на частные дома и малые бизнесы. Продукт SimpliPhi Power отличается малым весом, не требует дорогой системы охлаждения и вентиляции, а его гарантийный срок службы больше, чем у литийионных батарей.

Ещё раньше прошла презентация компании Orison, она намерена вывести на небольшой аккумулятор с простыми настройками («включил и работай»), предназначенный для обслуживания домашних солнечных панелей. Отличие решения Orison в том, что этот тип батарей не требует в США специальных разрешений для использования в частном и малом коммерческом секторе. Кроме того, аккумулятор от Orison прост в установке.

Будучи совсем молодым стартапом, фирма Orison ещё не обзавелась собственными производственными мощностями. Она планирует провести кампанию по привлечению инвестиций на Kickstarter, и если всё пройдет успешно, то первые серийные изделия поступят в продажу в начале 2016 года.

Суть новшества, предлагаемого инженерами из Orison в том, чтобы провести полную автоматизацию управления аккумулятором. Устройство подключается к сети через обычную розетку, после чего работает в режиме подзарядки в те периоды, когда энергия поступает извне (например, днем, когда работают солнечные панели). Вечером и ночью батарея производит отдачу энергии в домашнюю сеть.

Владельцы домов, оснащенных солнечными панелями, должны быть заинтересованы в установке аккумуляторов такого типа. В будущем эти системы принесут домовладельцам ощутимый финансовый выигрыш, поскольку позволят лучше управлять процессом взаимодействия с национальной энергетической сетью. Домохозяйство, оборудованное «умным» аккумулятором, сможет экономить, подключаясь к общей сети в не пиковые периоды и получая электроэнергию по сниженным тарифам. Выигрыш ожидает и энергетиков, пиковые нагрузки на генераторы электростанций будут сглаживаться.

В батареях компании SimpliPhi использован фосфорно-кислый железистый литий (lithium iron phosphate). Это соединение феноменально улучшает уровень безопасности, снижая риск перегрева и возгорания аккумулятора.

На данный момент, несмотря на шумную PR-кампанию, сопровождавшую выход на рынок домашних аккумуляторов Tesla, батареи такого типа остаются слишком дорогими и громоздкими для большинства потенциальных клиентов.

Компания SolarCity, крупнейший в США провайдер солнечной энергии, начала предлагать комбинированные системы, включающие солнечные панели и аккумуляторы Powerwall от Tesla этим летом. Однако сейчас это решение доступно только для недавно построенных домов.

Конкурент SolarCity, компания SunEdison ранее в этом году приобрела стартап Solar Grid Storage, владеющий рядом ценных технологий. Но пока сложно сказать, к каким последствиям для рынка хранения энергии домохозяйствами это может привести.

Для многих клиентов желаемая цель состоит в том, чтобы «окончательно перерезать пуповину». Установить у себя достаточное число солнечных панелей и аккумуляторов, чтобы отпала необходимость обращаться к национальной энергетической сети. Но большинство домохозяев не смогут добиться этой цели в обозримом будущем.

Генеральный менеджер SimpliPhi, Кэтрин Фон Бёрг отметила: «Как мы можем видеть рыночную ситуацию, потребители остаются привязанными к общей сети, но развивают собственные мощности генерации и хранения, сеть превращается в резервный вариант».

В изделиях компании Orison применена привычная конструкция батареи, на основе сплава лития, марганца и кобальта. Гендиректор Orison, Эрик Клифтон отказался назвать поставщика материала для батарей. В продуктах SimpliPhi установлена батарея нового типа, на основе фосфорно-кислого железистого лития. Отсутствие в конструкции кобальта, редкого металла, чья цена на рынке подвержена сильным колебаниям, снижает зависимость от сырья. Ещё более важно то обстоятельство, что в продуктах SimpliPhi решена проблема перегрева, которая была серьезной болезнью литийионных батарей. Как известно, обычные литийионные аккумуляторы проявили склонность к разрушению при перегреве (вследствие теплового пробоя) и даже к возгоранию.

При этом батареи на основе фосфорно-кислого железистого лития обладают меньшей производительностью, что ведет к увеличению требуемого объема помещений для их хранения.

Как бы то ни было, пока не известно, готовы ли потребители в массовом порядке платить тысячи долларов ради возможности запасать электроэнергию в своих домах.

Будьте в курсе всех важных событий United Traders - подписывайтесь на наш

Дорогие в производстве батареи, применяемые в альтернативной энергетике для «передержки» невостребованной энергии, заменили бактерии.

Специалистам из Университета Чикаго удалось решить глобальную проблему хранения накапливающихся в процессе работы солнечных или ветряных электростанций излишек электроэнергии, которые примерно в половине случаев приходится в буквальном смысле «спускать в воздух». Напомним, что работа станций выработки электричества из альтернативных источников — энергии Солнца или ветра, отличается от других направлений энергетики скачкообразным и зависящим от времени суток или розы ветров вырабатыванием необходимой для работы многочисленных электроприборов электроэнергии. Если земное светило позволяет получать «дармовую» энергию только в яркий солнечный день, когда небо остается чистым от облаков и других мешающих лучам «достать» до поверхности земли природных явлений, то потребители — домашняя техника или промышленное оборудование, нуждающееся в постоянной подпитке, работает и по ночам. Аналогичная ситуация происходит и при преобразовании энергии ветра в электричество — когда он дует, огромные мельницы обеспечивают необходимую выработку, которая автоматически прекращается при изменении направления ветра или его недостаточной силе. Это вынуждает энергетиков предусматривать пути накопления превышающей потребление энергии, чтобы в моменты пиковой нагрузки, приходящейся как раз на вечернее время, обеспечивать потребности энергетической сети даже в ситуации с отсутствующим солнечным светом и утихшими до нулевой скорости ветрами.

Для этого энергетики сегодня применяют огромные аккумуляторные станции, позволяющие хранить излишки электроэнергии для их последующего использования в моменты пиковых загрузок электросетей, однако вопрос строительства таких «накопителей» и закупки десятков тысяч дорогостоящих емких аккумуляторов превращает альтернативную энергетику в очень дорогое удовольствие. Ряд рыночных игроков попытался решить эту проблему предложением домашних аккумуляторных батарей, которые потребители могут устанавливать в собственных домах, чтобы использовать возможности «чистой» энергетики прямо в своем загородном коттедже без оглядки на время суток или прогнозы по силе и направлению ветров. Речь идет о батареях Tesla Powerwall, позволяющих накапливать от 7 до 14 кВт·ч в закрепляемой на стене помещения аккумуляторной емкости, «заполняемой» работающими в отсутствие хозяев на протяжении всего светового дня солнечными панелями. Энергопотребление квартиры или частного коттеджа в течение рабочего дня, когда все находятся за пределами жилища — в офисах, приближается к нулю, а возвращение жильцов домой происходит уже после прохождения пика выработки электричества из солнечного света. Такая батарея помогает запитать присутствующие дома электроприборы вечером, ночью и ранним утром, однако цена Tesla Powerwall заставляет всерьез задуматься о целесообразности приобретения такого «накопителя энергии». Официальный прайс компании-производителя так ине появившихся на рынке «домашних батареек» сообщает о начальной стоимости продукта в $3000.

Точно такие же трудности испытывают и энергетические компании, занятые в сегменте альтернативной энергетики — необходимость хранить излишки электричества в дорогостоящих и обладающих ограниченным количеством циклов перезарядки аккумуляторах резко снижает рентабельность такого начинания. Сегодня правительства ведущих государств Европы напрямую субсидируют компании, занимающиеся преобразованием солнечной и ветряной энергии в электричество, чтобы они могли работать без угрозы неминуемого банкротства. Именно эту проблему — чрезмерную дороговизну создания «энергетических хранилищ», и сумели решить ученые из Чикагского Университета, создавшие уникальную и сверхдешевую технологию преобразования электроэнергии в метан — применяемый во многих отраслях промышленности, включая электроэнергетику, легко транспортируемый и не требующий серьезного ухода газ. Созданный руководителем исследовательской группы из США Лоренсом Метсом стартап под названием Electrochaea уже начал работу в направлении коммерциализации разработанной специалистами методики, заявляя о готовности в ближайшее время построить мощнейшую 10-Мегаваттную коммерческую «электро-метановую» станцию полного цикла.

Запланированное к постройке в Венгрии перерабатывающее предприятие позволит в непрерывном режиме преобразовывать невостребованную бытовыми и промышленными потребителями энергию в удобный в использовании и необходимый, в частности, для отопления домов метан. По словам Метса, с энергокомпанией Magyar Villamos Muvek достигнута договоренность о прокладке газопровода непосредственно от здания завода для транспортировки выработанного метана прямо в газотранспортную систему страны. Прототипом для строящейся «электро-метановой» станции мощностью 10 МВт в Венгрии стала экспериментальная 1-Мегаваттная установка BioCat, возведенная исследователями три года назад. Проверка работоспособности научных изысканий в реальных условиях подтвердила революционную сущность и невероятную перспективу повсеместного внедрения уникальной по всем показателям технологии. Последняя основана на «эксплуатации» слегка «доработанных» микроорганизмов, представляющих собой созданный в лабораторных условиях штамм метаногенной бактерии Archaea. Эта бактерия в процессе жизнедеятельности занимается превращением смеси из водорода и диоксида углерода в метан и воду, которые после разделения наполняют метановые резервуары преобразованным в газ электричеством. Первым этапом очень простого с технологической точки зрения процесса становится разделение молекул воды на водород и кислород, для чего как раз и применяется избыточная электроэнергия, получаемая на ветряных и активно строящихся во всем мире солнечных плантациях.

Результат многолетней исследовательской работы группы американских и европейских ученых обеспечивет человечество очень простым, удобным и недорогим способом хранения излишек электроэнергии без необходимости закупки фантастически дорогих и технологически «грязных» аккумуляторов — при их сборке производителями применяются наносящие серьезный ущерб экологии материалы и технологии, при этом после выработки ресурса использованные батареи пополняют многочисленные городские и загородные свалки. Вместо критического для Природы ущерба от литий-ионных емкостей Метс предлагает воспользоваться технологически совершенным и основанным на естественных биологических процессах методом превращения электрического тока в метан, который впоследствии можно применять в теплоэнергостанциях, автомобилях с метановыми двигателями и даже водородомобилях. Автомобили с водородными двигателями работают на чистом водороде, получать который проще всего из газа метан, что превращает разработку Метса и его коллеги из Университета Чикаго в фантастический по масштабам и приобретаемым потребительским обществом перспективам научный прорыв.

Wikimedia Commons

Пожалуй, самая старая форма современного хранения энергии, привязанного к энергосети. Принцип работы прост: имеется два резервуара для воды, один выше другого. Когда потребность в электричестве низкая, энергию можно использовать для закачки воды наверх. В пиковые часы вода устремляется вниз, вращая гидрогенератор и вырабатывая электричество. Подобные проекты разрабатывает, например, Германия в заброшенных угольных шахтах или сферических контейнерах на дне океана.

Сжатый воздух

Power South

В целом этот способ напоминает предыдущий, за исключением того, что вместо воды в резервуары нагнетается воздух. При необходимости воздух выпускается и вращает турбины. Эта технология существует в теории уже несколько десятков лет, но на практике, из-за ее высокой стоимости, есть всего лишь несколько рабочих систем и чуть больше - испытательных. Канадская компания Hydrostor разрабатывает в Онтарио и Арубе крупный адиабатический компрессор.

Расплавленная соль

SolarReserve

Солнечную энергию можно использоваться для нагревания соли до нужной температуры. Полученный пар либо немедленно перерабатывается генератором в электричество, либо хранится в течение нескольких часов в виде расплавленной соли, чтобы, например, нагревать дома вечером. Один из подобных проектов - солнечный парк имени Мохаммеда ибн Рашида Аль Мактума - в Арабских Эмиратах. А в лаборатории Alphabet X возможность использования расплавов солей в сочетании с антифризом для того, чтобы сохранить излишки энергии Солнца или ветра. Недавно в Технологическом институте Джорджии построили более эффективную систему, в которой соль заменена на жидкий металл.

Проточные батареи

Ученые ЦЕРНа: «Вселенная не должна существовать»

Окислительно-восстановительные проточные батареи состоят из огромных цистерн с электролитом, которые пропускаются через мембраны и создают электрический заряд. Обычно в качестве электролита используется ванадий, а также растворы цинка, хлора или соленая вода. Они надежны, просты в эксплуатации, у них долгий срок службы. Крупнейшую в мире проточную батарею построить в пещерах Германии.

Традиционные аккумуляторы

SDG&E

Calmac

Ночью хранящуюся в цистернах воду замораживают, а днем лед тает и охлаждает соседние дома, позволяя экономить на кондиционерах. Эта технология привлекательна для регионов с жарким климатом и прохладными ночами, например, для или Калифорнии. В мае этого года компания NRG Energy поставила 1800 промышленных ледяных батарей предприятию Southern California Edison.

Супермаховик

Beacon Power

Эта технология предназначена для накапливания кинетической энергии. Электричество запускает мотор, который запасает энергию вращения в барабане. Когда она нужна, маховик замедляется. Изобретение не получило широкого распространения, хотя оно может применяться для обеспечения бесперебойного питания.

Ученые давно пытаются найти способы хранить энергию, чтобы пользоваться ею в любое время, а не тогда, когда заблагорассудится природе. И, надо сказать, определенных успехов человечество в этом добилось. Придумано большое количество способов, заставляющих электроток «отложить» свое действие. Однако все они непригодны для постоянного надежного хранения, а главное – не столь мощны, как хотелось бы.

На высшем уровне

Наконец проблема стала столь велика, что ею занялись на высшем уровне. Вице-премьер Аркадий Дворкович поручил «РОСНАНО» и Минэнерго РФ разработать программу по развитию промышленных технологий хранения электроэнергии. Такие технологии смогут компенсировать дефицит электроэнергии в случае аварий, а также сохранять невостребованную выработку ветровых и солнечных электростанций.

Проблема в том, что более-менее приемлемых способов в мире пока не найдено. Однако господдержка, конечно, позволит активизировать поиски. Тем более что планируется компенсировать риски инвестиционных проектов в этой области, тем самым стимулируя спрос на внедрение новых накопителей. Использование накопителей позволит создавать экономически эффективные локальные энергосистемы, сгладить пики потребления и создавать рынки торговли электроэнергией для распределенной энергетики.

Сейчас работа электростанций подстраивается под потребителей, но во избежание резких пусков и возможных аварий необходим аккумулятор мощностью от 10‑20 МВт, способный полтора-два часа закрывать энергодефицит. Поиск его велся последние 20 лет, но пока необходимый аккумулятор так и не был найден, а те, что уже существуют, слишком дороги и имеют низкий КПД.

Сейчас мощность используемых аккумуляторов не превышает 1‑2 МВт. Так, итальянский энергоконцерн Enel осенью 2015 года запустил хранилище электроэнергии при солнечной станции на 10 МВт мощностью 2 МВт-ч.

Наибольший спрос в системах хранения, по прогнозам, будет в странах, активно повышающих долю возобновляемой энергетики в общей генерации (в некоторых странах ее планируется увеличить до 25‑30 %), а также в изолированных энергосистемах, таких, как у государств Азии и Африки. Еще один потенциальный потребитель – Дальний Восток, где возобновляемые источники необходимы в силу удаленности от больших электросетей и активно внедряются, но из‑за нестабильности выработки вынуждены действовать в комплексе с дизельными установками.

Кроме того, такие системы будут востребованы и на электротранспорте, где накопители призваны сгладить график потребления.
«Альтернативная энергетика уже завоевала свое место в мире, – говорит глава «РОСНАНО» Анатолий Чубайс. – Ее доля в общем объеме генерации возросла с 1 % до 10 %, и дальше только будет продолжать расти. По мнению экспертов, к 2050 году до 40 % энергобаланса будет составлять альтернативная энергетика. Я считаю, что в ближайшие 5‑15 лет хранение электроэнергии станет коммерчески состоявшейся технологией – и мы перейдем к другой электроэнергетике.

Прорывная технология, которая позволит разделить генерацию и потребление, – это накопление энергии. Такая технология изменит наши дома, потому что в этой ситуации потребитель станет независим от производителя электроэнергии. И это вопрос не 2050, не 2030 года – а гораздо более ранних сроков».

На стратегической сессии «Создание системы государственного стимулирования хранения электроэнергии в Российской Федерации», прошедшей в «Роснано», было отмечено, что глобальный рынок систем накопления электроэнергии находится в шаге от скачкообразного роста – за 10 лет его объем может вырасти в 100 раз. Уже сейчас очевидна тенденция к снижению стоимости производства систем хранения и совершенствование технических решений до уровня, который будет востребован промышленностью на рубеже 2020 года.

Задачи сохранения

В целом, проблема эффективного аккумулирования энергии, вырабатываемой в том числе из возобновляемых источников энергии, сейчас является одним из наиболее сложных вопросов энергетики. Конечно, внедрение аккумуляторов сделает энергоснабжение более надежным, позволит резервировать его.

С помощью аккумулирующих устройств решаются следующие задачи:

выравнивание пульсирующей мощности, которую вырабатывает генерирующая установка в условиях, например, постоянно меняющейся скорости ветра;
согласование графиков производства и потребления энергии с целью питания потребителей в периоды, когда агрегат не работает или его мощности недостаточно;
увеличение суммарной выработки энергии генерирующей установкой.

Для реализации этих задач сейчас применяют, как правило, так называемые емкостные аккумулирующие устройства, в которых запас энергии рассчитан на 2‑3‑суточное потребление. Они необходимы для использования в периоды достаточно длительных спадов генерации энергии.

При решении вопросов, связанных с аккумулированием энергии, должны приниматься во внимание многие характеристики аккумуляторов:

относительная масса;
удельные затраты;
длительность хранения энергии;
сложность энергетических преобразований;
безопасность эксплуатации и т. п.

Требуемая емкость аккумулятора зависит от типа и характеристик агрегата, условий и схемы использования генерирующей установки, мощности нагрузки и схемы потребителя. Она определяется также исходя из технико-экономических показателей, т. к. аккумулирование не должно приводить к большому увеличению затрат на энергоснабжение объекта.

Гидроаккумулирующие станции

Как сейчас решается проблема сохранения энергии? На самом деле человечество изобрело достаточно много видов аккумуляторов – от уже ставших привычными до совсем экзотических.

Самые известные – механические. Например, гидроаккумулирующие электростанции (ГАЭС).

Гидроэнергия является, по существу, одной из разновидностей механической энергии, но отличается тем, что ее можно аккумулировать в очень больших количествах и использовать при такой мощности и в таких промежутках времени, которые позволяют выравнивать переменную нагрузку энергосистем и обеспечить более равномерный режим работы тепловых электростанций.

Гидроаккумулирующая электростанция включает в себя два водохранилища (верхнее и нижнее), разность уровней которых обычно составляет от 50 до 500 метров. В машинном зале имеются обратимые агрегаты, которые могут работать как в качестве двигателей-насосов, так и турбин-генераторов. При высоком напоре (500 метров и больше) используются отдельные насосные и турбинные агрегаты. Во время, когда нагрузка энергосистемы минимальна (например, ночью) эти агрегаты заполняют водой верхнее водохранилище, а во время пиковой нагрузки системы преобразуют накопленную гидроэнергию в электрическую. КПД такого аккумулирования равен 70‑85 %, себестоимость получаемой таким способом электроэнергии намного выше, чем на тепловых электростанциях, но выравнивание графика нагрузки и возможность уменьшения номинальной мощности тепловых электростанций снижают эксплуатационные расходы энергосистем и вполне оправдывают сооружение ГАЭС. В настоящее время в мире их существует более трехсот.

Когда снижается потребность в электроэнергии, ее избыток используется на ГАЭС для перекачки воды из нижнего резервуара в верхний. Таким образом «лишняя» электрическая энергия превращается в механическую (потенциальную) энергию. Во время повышенного спроса на электроэнергию производится перепуск воды из верхнего резервуара в нижний. При этом вода протекает через гидротурбогенератор, в котором ее потенциальная энергия превращается в электрическую.

Маховики

Второй тип механического аккумулятора предназначается для транспортных устройств. Принцип его работы удивительно прост. Аккумулятор этого типа – маховик, обладающий большой массой и раскручиваемый до очень высокого числа оборотов.

Запасаемая им энергия – не что иное, как кинетическая энергия самого маховика. Для повышения кинетической энергии маховика нужно увеличивать его массу и число оборотов вращения. Но с ростом числа оборотов увеличивается центробежная сила, что может привести к разрыву маховика. Поэтому для маховиков используются самые прочные материалы. Например, сталь и стеклопластик. Уже изготовлены маховики, масса которых измеряется многими десятками килограммов, а частота вращения достигает 200 тысяч оборотов в минуту.

Потери энергии при вращении маховика вызываются трением между поверхностью маховика и воздухом и трением в подшипниках. Для уменьшения потерь маховик помещают в кожух, из которого откачивается воздух, т. е. внутри кожуха создается вакуум. Применяются самые совершенные конструкции подшипников. В этих условиях годовая потеря энергии маховиком может быть менее 20 %.

В настоящее время созданы опытные образцы городских автобусов с аккумулятором энергии этого типа. Но перспектива использования маховиков-аккумуляторов пока неясна.

Гирорезонансные накопители энергии представляют собой тот же маховик, но выполненный из эластичного материала (например, резины). Энергия здесь запасается в резонансной волне упругой деформации материала маховика. Такими конструкциями в конце 1970‑х в Донецке занимался Н. З. Гармаш. По его оценкам, при рабочей скорости маховика, составляющей 7‑8 тысяч оборотов в минуту, запасенной энергии было достаточно для того, чтобы автомобиль мог проехать 1500 километров против 30 километров с обычным маховиком тех же размеров.

Электрохимический аккумулятор

Издавна используется такой класс аккумуляторов энергии, как электрохимические аккумуляторы.

Электрохимический аккумулятор заряжается (накапливает энергию) путем питания его электрической энергией. В аккумуляторе она преобразуется в энергию химическую. Выдает же электрохимический аккумулятор накопленную энергию снова в виде электрической энергии.

Аккумулятор этого типа имеет два электрода – положительный и отрицательный, погруженные в раствор – электролит. Преобразование химической энергии в электрическую происходит посредством химической реакции. Чтобы дать начало реакции, достаточно замкнуть внешнюю часть электрической цепи аккумулятора. На отрицательном электроде, содержащем восстановитель, в результате химической реакции происходит процесс окисления. Образующиеся при этом свободные электроны переходят по внешнему участку электрической цепи от отрицательного электрода к положительному. Иными словами, между электродами возникает разность потенциалов, создающая электрический ток.

При зарядке аккумулятора химическая реакция протекает в обратном направлении.

Электрохимические аккумуляторы получили очень широкое распространение главным образом при запуске двигателей внутреннего сгорания.
В настоящее время больше всего используются сравнительно дешевые свинцово-кислотные аккумуляторы. Однако последнее время на гибридных автомобилях и электромобилях начали применяться мощные литий-ионные аккумуляторы. Помимо меньшего веса и большей удельной емкости, они позволяют практически полностью использовать свою номинальную емкость, считаются более надежными и имеющими больший срок службы.

Главным недостатком всех существующих электрохимических аккумуляторов является низкое значение удельной энергии, запасаемой аккумулятором.

Хранение с помощью… вагона

Суть гравитационных механических накопителей состоит в том, что некий груз поднимается на высоту и в нужное время отпускается, заставляя по ходу вращаться ось генератора. Идея проста: в то время, когда солнечные батареи и ветряки производят достаточно много энергии, специальные тяжелые вагоны при помощи электромоторов загоняются на гору. Ночью и вечером, когда источников энергии недостаточно для обеспечения потребителей, вагоны спускаются вниз, и моторы, работающие как генераторы, возвращают накопленную энергию обратно в сеть.

Примером реализации такого способа накопления энергии может служить устройство, предложенное калифорнийской компанией Advanced Rail Energy Storage (ARES).

Практически все механические накопители имеют простую конструкцию, а следовательно, высокую надежность и большой срок службы. Время хранения однажды запасенной энергии практически не ограничено, если только груз и элементы конструкции с течением времени не рассыплются от старости или коррозии.

Энергию, запасенную при поднятии твердых тел, можно высвободить за очень короткое время. Ограничение на получаемую с таких устройств мощность накладывает только ускорение свободного падения, определяющее максимальный темп нарастания скорости падающего груза.
К сожалению, удельная энергоемкость таких устройств невелика. Чтобы запасти энергию для нагрева 1 литра воды, надо поднять тонну груза как минимум на высоту 35 метров.

Гидравлика и гравитация

Существуют гидравлические накопители гравитационной энергии. Вначале перекачиваем 10 тонн воды из подземного резервуара (колодца) в емкость на вышке. Затем вода из емкости под действием силы тяжести перетекает обратно в резервуар, вращая турбину с электрогенератором. Срок службы такого накопителя может составлять 20 и более лет.

К сожалению, гидравлические системы трудно поддерживать в должном техническом состоянии – прежде всего, это касается герметичности резервуаров и трубопроводов и исправности запорного и перекачивающего оборудования. И еще одно важное условие – в моменты накопления и использования энергии рабочее тело (по крайней мере, его достаточно большая часть) должно находиться в жидком агрегатном состоянии, а не пребывать в виде льда или пара. Зато иногда в подобных накопителях возможно получение дополнительной даровой энергии, – скажем, при пополнении верхнего резервуара талыми или дождевыми водами.

Электролизер

Здесь на этапе накопления энергии происходит химическая реакция, в результате которой восстанавливается топливо, например из воды выделяется водород – прямым электролизом, в электрохимических ячейках с использованием катализатора или с помощью термического разложения, скажем, электрической дугой или сильно сконцентрированным солнечным светом. «Освободившийся» окислитель может быть собран отдельно или за ненадобностью «выброшен».

На этапе извлечения энергии наработанное топливо окисляется с выделением энергии. Например, водород может дать сразу тепло, механическую энергию (при подаче его в двигатель внутреннего сгорания или турбину) либо электричество (при окислении в топливной ячейке).

Этот способ очень привлекателен независимостью этапов накопления энергии («зарядки») и ее использования («разрядки»), высокой удельной емкостью запасаемой в топливе энергии (десятки мегаджоулей на килограмм топлива) и возможностью длительного хранения. Однако его широкому распространению препятствует неполная отработанность и дороговизна технологии, высокая пожаро- и взрывоопасность. Несмотря на эти недостатки, в мире разрабатываются различные установки, использующие водород в качестве резервного источника энергии.

Конденсаторы

Самые массовые «электрические» накопители энергии – это обычные радиотехнические конденсаторы. Они обладают огромной скоростью накопления и отдачи энергии и способны так работать в широком диапазоне температур многие годы. Объединяя несколько конденсаторов параллельно, легко можно увеличить их суммарную емкость до нужной величины. Однако у конденсаторов есть два основных недостатка. Во-первых, это весьма малая удельная плотность запасаемой энергии и потому небольшая (относительно других видов накопителей) емкость. Во-вторых, это малое время хранения, которое редко превышает несколько часов, а часто составляет лишь малые доли секунды. В результате область применения конденсаторов ограничивается различными электронными схемами.

Ионисторы, которые иногда называют «суперконденсаторами», можно рассматривать как своего рода промежуточное звено между электролитическими конденсаторами и электрохимическими аккумуляторами. От первых они унаследовали практически неограниченное количество циклов заряда-разряда, а от вторых – относительно невысокие токи зарядки и разрядки. Емкость их также находится в диапазоне между наиболее емкими конденсаторами и небольшими аккумуляторами.

Другие типы накопителей

В пружинных механических накопителях большой расход и поступление энергии обеспечивается за счет сжатия и распрямления пружины. Срок хранения накопленной энергии в сжатой пружине может составлять многие годы. Однако следует учитывать, что под действием постоянной деформации любой материал с течением времени накапливает усталость. Поэтому спустя время сжатая пружина может оказаться «разряженной» полностью или частично.

К газовым механическим накопителям относится ресивер воздушный. В этом классе устройств энергия накапливается за счет упругости сжатого газа. При избытке энергии компрессор закачивает газ в баллон. Когда требуется использовать запасенную энергию, сжатый газ подается в турбину, непосредственно выполняющую необходимую механическую работу или вращающую электрогенератор.

Газ, сжатый до давления в десятки и сотни атмосфер, может обеспечить высокую удельную плотность запасенной энергии в течение практически неограниченного времени. Однако входящие в состав установки компрессор с турбиной или поршневой двигатель, – устройства достаточно сложные, имеющие ограниченный ресурс.

Известны также накопители, использующие химическую энергию. Химическая энергия – это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при химических реакциях между веществами. Она либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальванических элементах и аккумуляторах. Эти источники энергии характеризуются высоким КПД (до 98 %), но низкой емкостью. Химические накопители энергии позволяют получать энергию как в том виде, из которого она запасалась, так и в любом другом. Но здесь не обойтись без специальных технологий и высокотехнологичного оборудования.

Помимо описанных выше, есть и другие типы накопителей энергии. Однако большинство из них весьма ограничено по плотности запасаемой энергии, по времени ее хранения, и имеют высокую удельную стоимость. Поэтому их эксплуатация всерьез не рассматривается.


С ейчас мы уже не можем представить свою жизнь без электричества и отопления. Вся наша повседневная жизнь связана с использованием множества электроприборов, которые обеспечивают нам необходимый уровень комфорта. Сегодня мы поговорим о том, как можно экономить электричество дома.

На диаграмме слева показана структура расхода электроэнергии для семьи из 3 человек.

С каждым годом затраты на электричество и отопление увеличиваются за счет повышения тарифов и роста количества используемых электроприборов. Так как запасы энергоресурсов очень ограничены, стоимость электроэнергии повышается ежегодно примерно на 15% и, соответственно, увеличиваются и наши платежи за электричество.

Поэтому все больше и больше людей начинают задумываться о том как экономить электричество дома.

Кроме того, экономия электричества позволит сократить потребление природных ресурсов и снизить выбросы вредных веществ в атмосферу, а значит внести посильный вклад в сохранение наших рек, озер и лесов.
Сэкономив 100 Вт электроэнергии, мы можем сохранить 48 кг каменного угля, или 33 л нефти, или 35 м3 природного газа.

В среднем семья из трех человек, проживающих в квартире 50 м2, платит за энергоресурсы около 59% от общей суммы коммунальных платежей, из них: 32% составляют отопление и горячее водоснабжение, 15% - электроэнергия, 12% - газ.

Данные советы актуальны для тех, кто имеет тепловые счетчики или электрообогреватели.

1.Утеплите дверные и оконные проемы специальным утеплителем.
Ведь основные утечки тепла происходят через окна и двери.


2. Вставьте новые энергосберегающие окна, лучше всего - с двойным стеклопакетом.
Если у вас есть балкон или лоджия, то застеклите их тоже. Это самый эффективный способ сберечь тепло в доме.


3. Необходимо правильно проветривать помещение.


Проветривайте при выключенном отоплении!
Полное проветривание в течении 2 минут каждые 3-4 часа сохраняет намного больше тепла, чем постоянное частичное проветривание. Зимой достаточно 2-3 минут полного проветривания. Весной и осенью - до 15 минут.

4. Не закрывайте батареи шторами и декоративными плитами и панелями.

1. Проверьте целостность проводки в доме.


Это предотвратит утечку электричества (потери могут составить до 30 %) и уменьшит опасность поломки бытовой техники и короткого замыкания.

2. Выключайте электроприборы, находящиеся в режиме «standby» (режима ожидания включения) - телевизор, музыкальный центр, DVD-проигрыватель.


Большинство приборов активно работают несколько часов в сутки, а остальное время находятся в режиме ожидания, при этом бесполезно расходуется значительное количество энергии.

3. Организуйте правильное освещение.


а. Максимально используйте естественное освещение (используйте светлые занавески, светлые тона отделки стен и потолков, чаще мойте окна, не захламляйте подоконники.) это позволит сделать помещение светлее.
б. Используйте принцип зонального освещения - необходимо рационально использовать общее освещение и местное. Общее освещение предназначено для общего освещения комнаты (люстра). Местное освещение (лампы,бра) позволяют осветить темные углы помещения.

Сочетание местного и общего освещения (комбинированное освещение) позволяет использовать свет более рационально - осветить только тот участок комнаты, который нам нужен. В результате устройства комбинированного освещения на комнату 18-20 м2 экономится до 200 кВт/ч.

4. Замените традиционные лампы накаливания на энергосберегающие.


Они потребляют в несколько раз меньше электроэнергии,а служат в несколько раз дольше.

5. Выключайте осветительные и другие электроприборы, в которых не нуждаетесь в данный момент.


Уходя, гасите свет.

6. Чаще мойте лампы и плафоны.

Как экономить электроэнергию на кухне и при приготовлении пищи

Электрическая плита - самый энергоемкий бытовой прибор, на ее долю приходится, больше половины всей потребляемой электроэнергии. Соблюдая простые правила и приемы при приготовлении пищи, можно сэкономить значительное количество электроэнергии.

1. При варке в кастрюле нужно включать конфорку на полную мощность только до закипания воды. Как только вода закипела, сразу же переключайте нагрев конфорки на минимальное положение, при этом расход электроэнергии резко снизится, а время приготовления не увеличится.

2.Обязательно плотно закрывайте кастрюлю крышкой. При варке в открытой посуде расход электроэнергии увеличивается в 2,5 раза. Даже если крышка немного приоткрыта, это равнозначно тому, что крышки нет совсем, т.к. тепло теряется с уходящим паром.

3. Используйте посуду с диаметром дна, соответствующим размеру конфорки. Диаметры днищ кастрюль должны быть больше или равны диаметрам конфорок электроплит, на которые их ставят.

4.Не допускайте бурного кипения воды на включенной на полную мощность конфорке, ведь для кипения на разогретой плите достаточно и гораздо меньшей мощности.

5.Если вы выключите конфорку электроплиты немного раньше до окончания приготовления блюда, то сэкономите электроэнергию за счёт остаточного тепла.

6. При варке овощей используйте минимальное количество воды в кастрюлях.

7. Выбирайте кастрюли по размеру,соответствующем необходимому объему пищи. Если требуется приготовить небольшой объем пищи, то лучше это сделать в маленькой. кастрюльке на самой маленькой конфорке.

8. Донышки у кастрюль и сковородок должны быть ровные и чистые, для того чтобы был плотный контакт с конфорками. Посуда с кривым дном или с нагаром требует электроэнергии на 60 % больше.

9. При покупке посуды выбирайте сковородки и кастрюльки с толстым дном и стекляными крышками.

10. Используйте скороварки. Они очень экономят электроэнергию и время. Время приготовления пищи в них сокращается в три раза, а расход электроэнергии в два раза. Это достигается благодаря герметичности скороварок и особого режима приготовления - температура внутри посуды достигает 120 градусов за счет избыточного давлении пара.

11.Посуда из нержавеющей стали с толстым полированным дном обеспечивает хороший контакт с плитой и позволяет экономить энергию. Посуда из алюминия, эмалированная, с тефлоновым покрытием не экономичны.

12. Состояние конфорок электроплиты имеет большое значение. Если в конфорке сгорели одна или две спирали или конфорка вспучилась от перегрева, потребление электроэнергии возрастает до 50 %. Ее нужно срочно менять.

13. Применяйте специальные электронагревательные приборы (сковородки, кастрюли, грили, кофеварки. и др.), в которых блюда получаются более вкусными и качественными, а электроэнергии тратится намного меньше. Используйте электрочайник, который сам по себе экономит электроэнергию, автоматически выключаясь при закипании в нем воды. Кипятите воды ровно столько, сколько требуется на один раз.

14.Существенно сократить расход на электроэнергию может своевременное удаление накипи внутри электрочайников.

15. Используйте термосы или поттеры для поддержания воды и пищи в нагретом состоянии в течение длительного времени.

16. Не используйте включенные конфорки электроплиты для обогрева помещения, это неэкономно, малоэффективно и опасно.

17. Для разогрева и приготовления пищи используйте микроволновые печи, они сэкономят вам время и энергию.

Что мы обычно делаем неэкономно:
■ выбираем неподходящую посуду - потери электроэнергии 10% -15%
■ Не закрываем плотно посуду при приготовлении пищи. - потери 2%- 6%
■ Используем слишком большой объем воды - потери 5%- 9%
■ Используем посуду не по размерам конфорки - потери 5% -10%
■ Не используем остаточное тепло - потери 10% -15%

А для закрепления материала - замечательная инфографика от Объединенной энергетической компании. Картинка кликабельна.


Используя эти простые советы вы сможете значительно сократить расходы на электроэнергию и сэкономить деньги.

Повторим основные правила:










Чтобы экономить электроэнергию в квартире, необходимо научиться использовать ее рационально. При этом кроме существенной экономии денег при оплате энергии, вы вносите очень важный вклад в решение глобальных экологических проблем.

В статье использованы материалы Информационно-консультационного центра по энергосбережению (ИКЦЭ).

Loading...Loading...