Утилизаторы теплоты вытяжного воздуха как перспективное энергосберегающее мероприятие. Как сделать расчет вентиляции: формулы и пример расчёта приточно-вытяжной системы Производство вентиляционных установок с роторными рекуператорами

ЛЕКЦИЯ

по учебной дисциплине"Тепло-массообменное оборудование предприятий"

(к учебному плану 200__г)

Занятие № 26. Теплообменники – утилизаторы. Конструкции, принцип действия

Разработал: к.т.н., доцент Костылева Е.Е.

Обсуждена на заседании кафедры

протокол № _____

от "_____" ___________2008 г.

Казань - 2008 г.

Занятие № 26 . Теплообменники – утилизаторы. Конструкции, принцип действия

Учебные цели:

1. Изучить конструкции и принцип различных теплообменников утилизаторов

Вид занятия: лекция

Время проведения : 2 часа

Место проведения : ауд. ________

Литература:

1. Электронные ресурсы Internet.

Учебно-материальное обеспечение:

Плакаты, иллюстрирующие учебный материал.

Структура лекции и расчет времени:

Одним из источников вторичных энергоресурсов в здании является тепловая энергия воздуха, удаляемого в атмосферу. Расход тепловой энергии на подогрев поступающего воздуха составляет 40...80% теплопотребления, большая ее часть может быть сэкономлена в случае применения так называемых теплообменников-утилизаторов.

Существуют различные типы теплообменников-утилизаторов.

Рекуперативные пластинчатые теплообменники выполняются в виде пакета пластин, установленных таким образом, что они образуют два смежных канала, по одному из которых движется удаляемый, а по другому - приточный наружный воздух. При изготовлении пластинчатых теплообменников такой конструкции с большой производительностью по воздуху возникают значительные технологические трудности, поэтому разработаны конструкции кожухотрубных теплообменников-утилизаторов ТКТ, представляющих собой пучок труб, расположенных в шахматном порядке и заключенных в кожух. Удаляемый воздух движется в межтрубном пространстве, наружный - внутри трубок. Движение потоков перекрестное.

Рис. 1 Теплообменники- утилизаторы:
а - пластинчатый утилизатор; б - утилизатор ТКТ;в - вращающийся; г - рекуперативный;
1 - корпус; 2 - приточный воздух; 3 - ротор; 4 - сектор продувной; 5 - вытяжной воздух; 6 - привод.

С целью предохранения от обледенения теплообменники снабжены дополнительной линией по ходу наружного воздуха, через которую при температуре стенок трубного пучка ниже критической (-20°С) перепускается часть холодного наружного воздуха.



Установки утилизации тепла вытяжного воздуха с промежуточным теплоносителем могут применяться системах механической приточно-вытяжной вентиляции, а также в системах кондиционирования воздуха. Установка состоит из расположенного в приточном и вытяжном каналах воздухонагревателя, соединенного замкнутым циркуляционным контуром, заполненным промежуточным носителем. Циркуляция теплоносителя осуществляется посредством насосов. Удаляемый воздух, охлаждаясь в воздухонагревателе вытяжного канала, передает тепло промежуточному теплоносителю, нагревающему приточный воздух. При охлаждении вытяжного воздуха ниже температуры точки росы на части теплообменной поверхности воздухонагревателей вытяжного канала происходит конденсация водяного пара, что приводит к возможности образования наледи при отрицательных начальных температурах приточного воздуха.

Установки утилизации тепла с промежуточным теплоносителем могут работать либо в режиме, допускающем образование наледи на теплообменной поверхности вытяжного воздухонагревателя в течение суток при последующем отключении и оттаивании, либо, если отключение установки недопустимо, при применении одного из следующих мероприятий по защите воздухонагревателя вытяжного канала от образования наледи:

  • предварительного нагрева приточного воздуха до положительной температуры;
  • создание байпаса по теплоносителю или приточному воздуху;
  • увеличения расхода теплоносителя в циркуляционном контуре;
  • подогрева промежуточного теплоносителя.

Выбор типа регенеративного теплообменника производят в зависимости от расчетных параметров удаляемого и приточного воздуха и влаговыделений внутри помещения. Регенеративные теплообменники могут устанавливаться в зданиях различного назначения в системах механической приточно-вытяжной вентиляции, воздушного отопления и кондиционирования воздуха. Установка регенеративного теплообменника должна обеспечивать противоточное движение воздушных потоков.

Систему вентиляции и кондиционирования воздуха с регенеративным теплообменником необходимо оснастить средствами контроля и автоматического регулирования, которые должны обеспечивать режимы работы с периодическим оттаиванием инея или предотвращением инееобразования, а также поддерживать требуемые параметры приточного воздуха. Для предупреждения инееобразования по приточному воздуху:

  • устраивают обводной канал;
  • предварительно подогревают приточный воздух;
  • изменяют частоту вращения насадки регенератора.

В системах с положительными начальными температурами приточного воздуха при утилизации тепла нет опасности замерзания конденсата на поверхности теплообменника в вытяжном канале. В системах с отрицательными начальными температурами приточного воздуха необходимо применять схемы утилизации, обеспечивающие защиту от обмерзания поверхности воздухонагревателей в вытяжном канале.

2. РАБОТА ТЕПЛООБМЕННИКА – УТИЛИЗАТОРА В СИСТЕМАХ ВЕНТИЛЯЦИИ И КОНДИЦИОНИРОВАНИЯ ВОЗДУХА

Теплообменники-утилизаторы могутт быть использованы в системах вентиляции и кондиционирования воздуха для утилизации теплоты удаляемого из помещения вытяжного воздуха.

Потоки приточного и вытяжного воздуха подводят через соответствующие входные патрубки в перекрестноточные каналы теплообменного блока, выполненного, например, в виде пакета алюминиевых пластин. При движении потоков по каналам происходит передача теплоты через стенки от более теплого вытяжного воздуха к более холодному, приточному. Затем эти потоки выводят из теплообменника через соответствующие выходные патрубки.

По мере прохождения через теплообменник температура приточного воздуха снижается. При низкой температуре наружного воздуха она может достигнуть температуры точки росы, что ведёт к выпадению капельной влаги (конденсата) на поверхности, ограничивающие каналы теплообменника. При отрицательной температуре этих поверхностей конденсат превращается в иней или лёд, что естественно нарушает работу теплообменника. Для предотвращения образования инея или льда или их удаления в процессе работы данного теплообменника измеряют температуру в самом холодном углу теплообменника или (как вариант) разность давлений в канале вытяжного воздуха до и после теплообменного блока. При достижении предельного, заранее заданного значения измеряемым параметром теплообменный блок поворачивается на 180" вокруг своей центральной оси. Таким образом обеспечивается снижение аэродинамического сопротивления, затрат времени на предотвращение образования инея или его удаление и использование при этом всей теплообменной поверхности.

Задача заключается в снижении аэродинамического сопротивления потоку приточного воздуха, использование для процесса теплообмена всей поверхности теплообменника при проведении процесса предотвращения образования инея или его удаления, а также уменьшение затрат времени на проведение указанного процесса.

Достижению указанного технического результата способствует то, что параметром, по которому судят о возможности образования или наличии инея на поверхности холодной зоны теплообменника, служит либо температура его поверхности в самом холодном углу, либо разность давлений в канале вытяжного воздуха до и после теплообменного блока.

Предотвращение образования инея посредством нагрева поверхности подводимым в каналы с их выходной стороны при помощи поворота теплообменника на угол 180 о потоком вытяжного воздуха (при достижении измеряемым параметром предельного значения) обеспечивает постоянное аэродинамическое сопротивление потоку приточного воздуха, а также использование для теплообмена всей поверхности теплообменника в течение всего времени его работы.

Использование теплообменника-утилизатора дает заметную экономию средств на отопление помещений и снижает потери тепла, неотвратимо существующие при вентиляции и кондиционировании. А за счёт принципиально нового подхода к предупреждению образования конденсата с последующим появлением инея или льда, их полному удалению, значительно повышается эффективность работы данного утилизатора, что выгодно отличает его от других средств утилизации тепла вытяжного воздуха.

3. ТЕПЛООБМЕННИКИ-УТИЛИЗАТОРЫ ИЗ ОРЕБРЕННЫХ ТРУБ

Одним из источников вторичных энергоресурсов в здании является тепловая энергия воздуха, удаляемого в атмосферу. Расход тепловой энергии на подогрев поступающего воздуха составляет 40...80% теплопотребления, большая ее часть может быть сэкономлена в случае применения так называемых теплообменников-утилизаторов.

Существуют различные типы теплообменников-утилизаторов.

Рекуперативные пластинчатые теплообменники выполняются в виде пакета пластин, установленных таким образом, что они образуют два смежных канала, по одному из которых движется удаляемый, а по другому - приточный наружный воздух. При изготовлении пластинчатых теплообменников такой конструкции с большой производительностью по воздуху возникают значительные технологические трудности, поэтому разработаны конструкции кожухотрубных теплообменников-утилизаторов ТКТ, представляющих собой пучок труб, расположенных в шахматном порядке и заключенных в кожух. Удаляемый воздух движется в межтрубном пространстве, наружный - внутри трубок. Движение потоков перекрестное.

Рис. Теплообменники:
а - пластинчатый утилизатор;
б - утилизатор ТКТ;
в - вращающийся;
г - рекуперативный;
1 - корпус; 2 - приточный воздух; 3 - ротор; 4 - сектор продувной; 5 - вытяжной воздух; 6 - привод.

С целью предохранения от обледенения теплообменники снабжены дополнительной линией по ходу наружного воздуха, через которую при температуре стенок трубного пучка ниже критической (-20°С) перепускается часть холодного наружного воздуха.

Установки утилизации тепла вытяжного воздуха с промежуточным теплоносителем могут применяться системах механической приточно-вытяжной вентиляции, а также в системах кондиционирования воздуха. Установка состоит из расположенного в приточном и вытяжном каналах воздухонагревателя, соединенного замкнутым циркуляционным контуром, заполненным промежуточным носителем. Циркуляция теплоносителя осуществляется посредством насосов. Удаляемый воздух, охлаждаясь в воздухонагревателе вытяжного канала, передает тепло промежуточному теплоносителю, нагревающему приточный воздух. При охлаждении вытяжного воздуха ниже температуры точки росы на части теплообменной поверхности воздухонагревателей вытяжного канала происходит конденсация водяного пара, что приводит к возможности образования наледи при отрицательных начальных температурах приточного воздуха.

Установки утилизации тепла с промежуточным теплоносителем могут работать либо в режиме, допускающем образование наледи на теплообменной поверхности вытяжного воздухонагревателя в течение суток при последующем отключении и оттаивании, либо, если отключение установки недопустимо, при применении одного из следующих мероприятий по защите воздухонагревателя вытяжного канала от образования наледи:

  • предварительного нагрева приточного воздуха до положительной температуры;
  • создание байпаса по теплоносителю или приточному воздуху;
  • увеличения расхода теплоносителя в циркуляционном контуре;
  • подогрева промежуточного теплоносителя.

Выбор типа регенеративного теплообменника производят в зависимости от расчетных параметров удаляемого и приточного воздуха и влаговыделений внутри помещения. Регенеративные теплообменники могут устанавливаться в зданиях различного назначения в системах механической приточно-вытяжной вентиляции, воздушного отопления и кондиционирования воздуха. Установка регенеративного теплообменника должна обеспечивать противоточное движение воздушных потоков.

Систему вентиляции и кондиционирования воздуха с регенеративным теплообменником необходимо оснастить средствами контроля и автоматического регулирования, которые должны обеспечивать режимы работы с периодическим оттаиванием инея или предотвращением инееобразования, а также поддерживать требуемые параметры приточного воздуха. Для предупреждения инееобразования по приточному воздуху:

  • устраивают обводной канал;
  • предварительно подогревают приточный воздух;
  • изменяют частоту вращения насадки регенератора.

В системах с положительными начальными температурами приточного воздуха при утилизации тепла нет опасности замерзания конденсата на поверхности теплообменника в вытяжном канале. В системах с отрицательными начальными температурами приточного воздуха необходимо применять схемы утилизации, обеспечивающие защиту от обмерзания поверхности воздухонагревателей в вытяжном канале.

Описание:

В настоящее время показатели теплозащиты многоэтажных жилых зданий достигли достаточно высоких
значений, поэтому поиск резервов экономии тепловой энергии находится в области повышения энергоэффективности инженерных систем. Одно из ключевых энергосберегающих мероприятий с довольно высоким потенциалом экономии тепловой энергии – использование утилизаторов 1 теплоты вытяжного воздуха в системах вентиляции.

В настоящее время показатели теплозащиты многоэтажных жилых зданий достигли достаточно высоких значений, поэтому поиск резервов экономии тепловой энергии находится в области повышения энергоэффективности инженерных систем. Одно из ключевых энергосберегающих мероприятий с довольно высоким потенциалом экономии тепловой энергии – использование утилизаторов 1 теплоты вытяжного воздуха в системах вентиляции.

Приточно-вытяжные вентустановки с утилизацией теплоты вытяжного воздуха по сравнению с традиционными приточными системами вентиляции обладают рядом достоинств, к числу которых следует отнести существенную экономию тепловой энергии, расходуемой на нагрев вентиляционного воздуха (от 50 до 90 % в зависимости от типа применяемого утилизатора). Также нужно отметить высокий уровень воздушно-тепловой комфортности, обусловленный аэродинамической устойчивостью вентиляционной системы и сбалансированностью расходов приточного и удаляемого воздуха.

Типы утилизаторовв

Наиболее широко применяются:

1. Регенеративные утилизаторы теплот ы. В регенераторах теплота вытяжного воздуха передается приточному воздуху через насадку, которая попеременно нагревается и охлаждается. Несмотря на высокую энергоэффективность, регенеративные утилизаторы теплоты обладают существенным недостатком – вероятностью смешивания определенной части удаляемого воздуха с приточным в корпусе аппарата. Это, в свою очередь, может привести к переносу неприятных запахов и болезнетворных бактерий. Поэтому их обычно применяют в пределах одной квартиры, коттеджа или одного помещения в общественных зданиях.

2. Рекуперативные утилизаторы теплоты. Данные утилизаторы, как правило, включают в свой состав два вентилятора (приточный и вытяжной), фильтры и пластинчатый теплообменник противоточного, перекрестного и полуперекрестного типов.

При поквартирной установке рекуперативных утилизаторов теплоты появляется возможность:

  1. гибко регулировать воздушно-тепловой режим в зависимости от варианта эксплуатации квартиры, в том числе с использованием рециркуляционного воздуха;
  2. защиты от городского, внешнего шума (при использовании герметичных светопрозрачных ограждений);
  3. очистки приточного воздуха с помощью высокоэффективных фильтров.

3.Утилизаторы теплоты с промежуточным теплоносителем. По своим конструктивным особенностям эти утилизаторы малопригодны для индивидуальной (поквартирной) вентиляции, и поэтому на практике их используют для центральных систем.

4. Утилизаторы теплоты с теплообменником на тепловых трубах. Использование тепловых труб позволяет создавать компактные энергоэффективные теплообменные устройства. Однако в связи со сложностью конструкции и высокой стоимостью они не нашли применения в системах вентиляции для жилых зданий.

В базовых показателях распределение расходов тепловой энергии в типовой многоэтажной застройке осуществляется почти поровну между трансмиссионными теплопотерями (50–55 %) и вентиляцией (45–50 %).

Примерное распределение годового теплового баланса на отопление и вентиляцию:

  • трансмиссионные теплопотери – 63–65 кВт ч/м 2 год;
  • нагрев вентиляционного воздуха – 58–60 кВт ч/м 2 год;
  • внутренние тепловыделения и инсоляция – 25–30 кВт ч/м 2 год.

Повысить энергоэффективность многоквартирных домов позволяет введение в практику массового строительства:

  • современных систем отопления с использованием комнатных термостатов, балансировочных клапанов и погодозависимой автоматики тепловых пунктов;
  • механических систем вентиляции с утилизацией теплоты вытяжного воздуха.

При сходных массогабаритных показателях наилучший результат в жилых зданиях показывают регенеративные утилизаторы теплоты (80–95 %), далее следуют рекуперативные (до 65 %) и на последнем месте находятся утилизаторы теплоты с промежуточным теплоносителем (45–55 %).

Следует упомянуть утилизаторы теплоты, которые, помимо передачи тепловой энергии, переносят влагу от вытяжного к приточному воздуху. В зависимости от конструкции теплопередающей поверхности они подразделяются на энтальпийный и сорбционный типы и позволяют утилизировать 15–45 % влаги, удаляемой с вытяжным воздухом.

Один из первых проектов внедрения

В 2000 году для жилого дома по Красностуденческому пр., д. 6, была запроектирована одна из первых систем поквартирной механической приточно-вытяжной вентиляции с утилизацией теплоты вытяжного воздуха для подогрева приточного в перекрестноточном воздухо-воздушном пластинчатом теплообменнике.

Компактная малошумная квартирная приточно-вытяжная установка расположена в каждой квартире в пространстве подшивного потолка гостевого санузла, расположенного рядом с кухней. Максимальная производительность по приточному воздуху составляет 430 м 3 /ч. Для уменьшения энергопотребления забор наружного воздуха в большинстве квартир осуществляется не с улицы, а из пространства застекленной лоджии. В остальных квартирах, где нет технической возможности забора воздуха с лоджий, воздухозаборные решетки расположены непосредственно на фасаде.

Наружный воздух очищается, при необходимости предварительно подогревается, чтобы предупредить обмерзание теплообменника, затем нагревается или охлаждается в теплообменнике за счет удаляемого воздуха, далее, при необходимости, окончательно догревается до требуемой температуры электрокалорифером, после чего раздается по помещениям квартиры. Первый нагреватель номинальной мощностью 0,6 кВт предназначен для защиты вытяжного тракта от замораживания конденсата. Конденсат посредством специальной дренажной трубки через гидрозатвор отводится в канализацию. Второй нагреватель мощностью 1,5 кВт предназначен для догрева приточного воздуха до заданного комфортного значения. Для простоты монтажа он также выполнен электрическим.

Следует отметить, что, по расчетам проектировщиков, необходимость в догреве воздуха после теплообменника могла возникнуть только при очень низких температурах наружного воздуха. Тем не менее, учитывая, что через утилизатор приточно-вытяжного агрегата проходит в два раза больше приточного воздуха, чем вытяжного, электрокалорифер на притоке был установлен. Практика эксплуатации подтвердила эти предположения: дополнительный догрев практически никогда не используется, теплоты вытяжного воздуха вполне хватает для нагрева приточного до температуры, не вызывающей у жильцов дискомфорта.

Теплоутилизатор оборудован системой автоматики с контроллером и пультом управления. Система автоматики предусматривает включение первого нагревателя при достижении температуры стенки теплообменника ниже 1 °С, второй нагреватель может включаться и отключаться, обеспечивая постоянство заданной температуры приточного воздуха.

Предусмотрено три фиксированных скорости вращения приточного вентилятора. На первой скорости объем приточного воздуха составляет 120 м 3 /ч, эта величина удовлетворяет требованиям для одно- и двухкомнатной квартиры, а также трехкомнатной квартиры при небольшом числе жителей. На второй скорости объем приточного воздуха составляет 180 м 3 /ч, на третьей – 240 м 3 /ч. Второй и третьей скоростью жители пользуются очень редко.

Были проведены акустические замеры на всех скоростях вращения вентилятора, которые показали, что на первой скорости уровень шума не превышает 30–35 дБ (А), причем эта величина справедлива для необставленной квартиры. В квартире с мебелью и предметами интерьера уровень шума будет еще ниже. На второй и третей скорости уровень шума выше, но при закрытой двери гостевого санузла не вызывает дискомфорта у жильцов.

Вытяжной воздух забирается из санузлов, затем, после фильтрации, пропускается через теплообменник и выбрасывается через центральный сборный вытяжной воздуховод. Сборные вытяжные воздуховоды – металлические, выполнены из оцинкованной стали и проложены в выгороженных противопожарных шахтах. На верхнем техническом этаже сборные воздуховоды одной секции объединяются и выводятся за пределы здания.

На момент реализации проекта нормативами запрещалось объединять для утилизации вытяжки санузлов и кухонь, поэтому вытяжки кухонь обособлены. Утилизируется теплота примерно половины объема воздуха, удаляемого из квартиры. В настоящее время этот запрет отменен, что позволяет еще больше повысить энергоэффективность системы.

В отопительный сезон 2008–2009 годов в здании было проведено энергетическое обследование систем теплопотребления, показавшее экономию теплоты на отопление и вентиляцию в размере 43 % по сравнению с аналогичными домами того же года постройки.

Проект в Северном Измайлово

Еще один подобный проект реализован в 2011 году в Северном Измайлово. В 153 квартирном здании предусмотрена поквартирная вентиляция с механическим побуждением и утилизацией теплоты вытяжного воздуха для нагрева приточного. Приточно-вытяжные агрегаты установлены автономно в коридорах квартир и оснащены фильтрами, пластинчатым теплообменником и вентиляторами. В состав комплектации установки входят средства автоматизации и пульт управления, позволяющий регулировать воздухопроизводительность установки.

Проходя через вентиляционную установку с пластинчатым утилизатором, вытяжной воздух нагревает приточный до 4°С (при температуре наружного воздуха –28°С). Компенсация дефицита теплоты на нагрев приточного воздуха осуществляется нагревательными приборами отопления.

Наружный воздух забирается с лоджии квартиры, а вытяжной воздух из ванн, санузлов и кухонь (в пределах одной квартиры) после утилизатора выводится в выбросной канал через спутник и удаляется в пределах технического этажа. При необходимости отвод конденсата от утилизатора теплоты предусматривается в канализационный стояк, оборудованный капельной воронкой с запахозапирающим устройством. Стояк расположен в помещении санузлов.

Регулирование расхода приточного и вытяжного воздуха осуществляется посредством одного пульта управления. Агрегат может быть переключен с обычного режима работы с утилизацией теплоты на летний режим без утилизации. Вентиляция технического этажа происходит через дефлекторы.

Объем приточного воздуха принят для возмещения вытяжки из помещений санузла, ванны, кухни. В квартире нет вытяжного канала для подключения кухонного оборудования (вытяжной зонт от плиты работает на рециркуляцию). Приток разведен через звукопоглощающие воздуховоды по жилым комнатам. Предусмотрена зашивка вентиляционной установки в поквартирных коридорах строительной конструкцией с лючками для обслуживания и вытяжного воздуховода от вентиляционной установки до вытяжной шахты. На складе службы эксплуатации находятся четыре резервных вентилятора.

Испытания установки с утилизатором теплоты показали, что ее эффективность может достигать 67%.

Использование систем механической вентиляции с утилизацией теплоты вытяжного воздуха в мировой практике широко распространено. Энергетическая эффективность утилизаторов теплоты составляет до 65% для пластинчатых теплообменников и до 85% для роторных. При использовании этих систем в условиях Москвы снижение годового теплопотребления к базовому уровню может составить 38–50 кВт ч/м 2 в год. Это позволяет снизить общий удельный показатель теплопотребления до 50–60 кВт ч/м 2 в год без изменения базового уровня теплозащиты ограждений и обеспечить 40 процентное снижение энергоемкости систем отопления и вентиляции, предусмотренное с 2020 года.

Литература

1. Серов С. Ф., Милованов А. Ю. Поквартирная система вентиляции с утилизаторами теплоты. Пилотный проект жилого дома // АВОК. 2013. № 2.
2. Наумов А. Л., Серов С. Ф., Будза А. О. Квартирные утилизаторы теплоты вытяжного воздуха // АВОК. 2012. № 1.

1 Изначально эта технология получила распространение в Северной Европе и Скандинавии. Сегодня и у российских проектировщиков имеется значительный опыт применения данных систем в многоэтажных жилых зданиях.

В Северной Европе и Скандинавии получили распространение системы вентиляции многоэтажных жилых зданий с подогревом приточного воздуха за счет теплоты удаляемого с помощью теплоутилизаторов. Теплоутилизаторы в системах вентиляции получили развитие в 1970-е годы в период энергетического кризиса.

К настоящему времени массовое применение нашли теплоутилизаторы: – рекуперативного типа на базе пластинчатых воздухо-воздушных теплообменников (рис. 41); – регенеративные с вращающейся теплообменной насадкой (рис. 42); – с промежуточным теплоносителем с теплообменниками «жидкость-воздух» (рис. 43).

По своему исполнению в многоэтажных жилых зданиях теплоутилизаторы могут быть центральными на все здания или группу квартир и индивидуальными, поквартирными.

Рис. 42. Теплоутилизатор с вращающейся теплообменной насадкой

Рис. 41. Теплоутилизатор рекуперативного типаутилизатор теплоты вентиляционного воздуха)

При сходных массогабаритных показателях наибольшей энергетической эффективностью обладают регенеративные теплоутилизаторы (80-95%), далее следуют рекуперативные (до 65%) и на последнем месте находятся теплоутилизаторы с промежуточным теплоносителем (45-55%).

По своим конструктивным особенностям теплоутилизаторы с промежуточным теплоносителем мало пригодны для индивидуальной поквартирной вентиляции, и поэтому на практике их используют для центральных систем.

Рис. 43. Утилизатор теплоты вентиляционного воздуха с промежуточным теплоносителем: 1 – приточная вентустановка; 2 – вытяжная вентустановка; 3 – теплообменник; 4 – циркуляционный насос; 5 – фильтр; 6 – корпус утилизатора

Регенеративные теплоутилизаторы обладают существенным недостатком - вероятностью смешивания определенной части удаляемого воздуха с приточным в корпусе аппарата, что, в свою очередь, может привести к переносу неприятных запахов и болезнетворных бактерий. Объем перетекающего воздуха в современных аппаратах сокращен до долей процента, но, тем не менее, большинство специалистов рекомендуют ограничить их область применения пределами одной квартиры, коттеджа или одного помещения в общественных зданиях.

Рекуперативные теплоутилизаторы, как правило, включают в свой состав два вентилятора (приточный и вытяжной), пластинчатый теплообменник, фильтры (рис. 41). В современных конструкциях в теплоутилизатор встраиваются два водяных или электрических подогревателя. Один служит для защиты от замораживания вытяжного тракта теплообменника, второй - для догрева температуры приточного воздуха до заданного значения.

Эти системы, по сравнению с традиционными, обладают рядом достоинств, к числу которых следует отнести существенную экономию тепловой энергии, расходуемой на подогрев вентиляционного воздуха, - от 50 до 90% в зависимости от типа применяемого утилизатора; а также высокий уровень воздушно-тепловой комфортности, обусловленный аэродинамической устойчивостью вентиляционной системы и сбалансированностью расходов приточного и удаляемого воздуха.

При установке рекуперативных теплоутилизаторов поквартирно появляются: – возможность гибко регулировать воздушно-тепловой режим в зависимости от режима эксплуатации квартиры, в том числе с использованием рециркуляционного воздуха; – возможность защиты от городского, внешнего шума (при использовании герметичных светопрозрачных ограждений); – возможность очистки приточного воздуха с помощью высокоэффективных фильтров.

Реализация указанных достоинств связана с решением ряда проблем: – необходимо предусмотреть соответствующие объемно-планировочные решения квартиры и выделить место для размещения теплоутилизаторов и дог полнительных воздуховодов; – следует предусмотреть защиту от замораживания теплоутилизаторов при низких температурах наружного воздуха (-10 °С и ниже); – утилизаторы должны быть в малошумном исполнении и при необходимости оборудованы дополнительными шумоглушителями; – необходимо обеспечить квалифицированное техническое обслуживание теплоутилизаторов (замена или чистка фильтров, промывка теплообменника).

Различные модификации утилизаторов теплоты удаляемого воздуха производят в общей сложности более 20 фирм. Кроме того, производство энергосберегающего оборудования начинается и на отечественных предприятиях.

Уровень звуковой мощности приведен без сети воздуховодов, без глушителей для открыто расположенного утилизатора.

Широкое применение в жилых многоэтажных зданиях систем механической вентиляции с утилизацией теплоты вытяжного воздуха сдерживается рядом факторов: – практически отсутствует материальное стимулирование энергосбережения у потребителей - владельцев квартир; – инвесторы-застройщики не заинтересованы в дополнительных затратах на инженерное оборудование в домах эконом- и бизнес-класса, полагая, что качество вентиляции - второстепенный показатель в формировании рыночной стоимости жилья; – «отпугивает» необходимость технического обслуживания механической вентиляции; – население недостаточно информировано о критериях воздушно-теплового комфорта жилища, его влиянии на здоровье и работоспособность.

Вместе с тем наметилась положительная тенденция преодоления отмеченных проблем, и у инвесторов, и у покупателей квартир появляется практический интерес в современных технических решениях систем вентиляции.

Сравним эффективность традиционной вентиляции и новых технических решений применительно к жилым многоэтажным зданиям массовой застройки.

Предлагается три варианта организации вентиляции в жилых 17-этажных зданиях серии П-44 для условий Москвы:
A. Вентиляция по типовому проекту (естественная канальная вытяжка из помещений кухни, ванны и туалета и приток за счет инфильтрации и от
крывания фрамуг окон).
Б. Механическая вытяжная, центральная система вентиляции с установкой в квартирах приточных и вытяжных клапанов постоянного расхода воздуха.
B. Механическая приточно-вытяжная система вентиляции с утилизацией теплоты удаляемого воздуха в рекуперативных теплообменниках.

Сравнение проводилось по трем критериям: – качество воздуха; – расход тепловой энергии в системах вентиляции; – акустический режим.

Для условий Москвы по данным метеонаблюдений были приняты следующие климатические условия.

В расчетах приняты следующие значения сопротивления теплопередаче: – стен - 3,2 м2 °С/Вт; – окон – 0,62 м2 °С/Вт; – покрытий - 4,04 м2 °С/Вт.

Система отопления с традиционными конвекторами на параметры теплоносителя 95/70 °С.

В каждом подъезде на этаже расположено две 2-комнатных, одна 1-комнатная и одна 3-комнатная квартиры. В каждой квартире предусмотрена кухня с электроплитой, ванная комната и туалет.

Вытяжка производится в соответствии с нормативами: – из кухни - 60 м3/ч; – из ванной комнаты - 25 м3/ч; – из туалета - 25 м3/ч.

Для анализа принято, что в варианте А за счет проветривания путем открывания фрамуг окон среднесуточный объем притока соответствует объему вытяжки из квартиры.

Рис. 44. Рекуператор с установкой догревателей воздуха в квартирах экспериментального дома: 1 – вентилятор удаляемого воздуха; 2 – вентилятор приточного воздуха; 3 – пластинчатый теплообменник; 4 – электрический нагреватель; 5 – подогреватель теплообменника; 6 – фильтр для наружного воздуха (класс EU5); 7 – фильтр для удаляемого воздуха (класс EU5); 8 – датчик против замерзания теплообменника; 9, 10 – автоматический сброс термозащиты; 11, 12 – ручной сброс термозащиты; 13 – датчик температуры приточного воздуха

В варианте Б постоянный воздухообмен обеспечивается за счет работы центрального вытяжного вентилятора, сетью воздуховодов связанного с каждой из квартир. Постоянство воздухообмена обеспечивается применением приточных клапанов постоянного расхода, установленных в створках окон, и саморегулирующихся вытяжных клапанов на кухне, в ванной комнате и туалете.

В варианте В используется механическая приточно-вытяжная система вентиляции с утилизацией теплоты удаляемого воздуха для подогрева приточного в пластинчатом теплообменнике. При сравнении также принято условие постоянства воздухообмена.

По критерию качества воздуха вариант А существенно уступает вариантам Б и В. Проветривание осуществляется периодически в течение произвольно выбранного жителями времени, т. е. субъективно и потому далеко не всегда эффективно. В зимний период проветривание связано с необходимостью покидать жителями проветриваемое помещение. Попытки отрегулировать открытие фрамуг для постоянной вентиляции чаще всего приводят к нестабильности работы вентиляции, возникновению сквозняков, температурному дискомфорту. При периодическом проветривании качество воздуха после закрытия форточек ухудшается, и большую часть времени жители проводят в загрязненной воздушной среде (рис. 45).

Рис. 45. Изменение воздухообмена и концентрации вредных веществ при периодическом проветривании помещений:
1 - воздухообмен;
2 - концентрация вредных веществ;
3 - нормативный уровень концентрации вредных веществ

Особый режим вентиляции предусматривается для помещения кухни. При приготовлении пищи в работу включается надплитньгй зонт, оборудованный высокопроизводительным многоскоростным вентилятором. Воздухопроиз-водительность современных надплит-ных зонтов достигает 600-1000 м3/ч, что во много раз превышает показатель расчетного воздухообмена в квартире. Для удаления воздуха от надплитных зонтов, как правило, предусматриваются отдельные воздуховоды, не связанные с системой общеобменной вытяжной вентиляции из кухни. Компенсационный расход приточного воздуха обеспечивается приточным клапаном в стене, открываемым в период работы зонта. Общий вывод по сравниваемым вариантам можно сделать следующий: наибольшей эффективностью по воздушно-тепловому комфорту и экономии тепловой энергии обладает вариант В с утилизацией теплоты вытяжного воздуха; для нормализации акустического режима требуются дополнительные меры по шумозащите вентиляторной установки.

Постоянно работающая вентиляция квартир с использованием приточных клапанов (вариант Б), встроенных в створки окон или наружные стены, при низких температурах наружного воздуха может привести к тепловому дискомфорту, связанному с неравномерным распределением температуры и скорости движения воздуха в помещениях. Несмотря на то что рекомендуется располагать приточные клапаны над или за отопительными приборами, специалисты в Западной Европе ограничивают эффективную область применения таких систем вентиляции районами с температурой наружного воздуха не ниже -10 °С. Наибольший интерес представляет вариант вентиляции В, т. е. механическая приточно-вытяжная вентиляция с утилизацией теплоты удаляемого воздуха в рекуперативных теплообменниках. Именно по этой системе произведено проектирование и строительство экспериментальной системы.

Экспериментальное здание состоит из четырех секций; общее количество квартир - 264. Под зданием размещен гараж-стоянка на 94 автомобиля. На 1-м этаже находятся вспомогательные нежилые помещения, два верхних этажа отведены под спортивно-оздоровительный центр. Жилые квартиры располагаются со 2-го по 16-й этаж. В квартирах свободной планировки от 60 до 200 м2 общей площади предусмотрены, помимо жилых помещений, кухня, ванная комната с санузлом, постирочная, гостевой туалет, кладовые помещения, застекленные лоджии. Здание построено по индивидуальному проекту (архитектор П. П. Пахомов). Конструктивные решения здания представляют собой монолит с эффективным утеплителем с кирпичной облицовкой. Концепция энергосберегающих решений здания разработана под руководством президента Ассоциации инженеров по отоплению, вентиляции, кондиционированию воздуха, теплоснабжению и строительной теплофизики, профессора Ю. А. Табунщикова, архитектурной мастерской «Архитекторы-XXI век», ОАО «ЦНИИПРОМЗДАНИЙ», ООО «НПО “ТЕРМЭК”».

Проектом предусмотрено комплексное решение, в котором функционально связаны энергосберегающие архитектурно-планировочные решения, эффективные ограждающие конструкции и инженерные системы нового поколения.

Конструкции здания имеют высокий уровень теплозащиты. Так, сопротивление теплопередаче стен составляет 3,33 м2 °С/Вт, металлопластиковых окон с двухкамерными стеклопакетами - 0,61 м2*°С/Вт, верхних покрытий - 4,78 м2 °С/Вт, лоджии застеклены солнцезащитными тонированными стеклами.

Внутренние параметры воздуха для холодного периода приняты следующими: – жилые комнаты - 20 °С; – кухня - 18 °С; – ванная - 25 °С; – туалет - 18 °С.

В здании запроектирована горизонтальная поквартирная система отопления с периметральной разводкой трубопроводов по квартире. Металлопластиковые трубы с теплоизоляцией в защитной гофре замоноличены в подготовку «черного» пола. На все здание общей площадью около 44 тыс. м2 в системе отопления жилой части всего четыре пары стояков (подающий и обратный) по числу секций. На каждом этаже в лифтовом холле к стоякам присоединены распределительные коллекторы к квартирам. Коллекторы оборудованы арматурой, балансировочными вентилями и квартирными счетчиками теплоты.

В здании запроектирована и реализована поквартирная регулируемая приточно-вытяжная система вентиляции с утилизацией теплоты удаляемого воздуха.

Компактный приточно-вытяжной агрегат с пластинчатым рекуператором размещен в подшивном потолке гостевого туалета рядом с кухней.

Забор приточного воздуха осуществляется через теплоизолированный воздуховод и отверстие в наружной стене, выходящей на лоджию кухни. Удаляемый воздух забирается из помещения кухни. Вытяжка из туалетов и ванной комнаты не теплоутилизируется, т. к. на момент согласования проекта нормативы запрещали объединять в пределах квартиры в одну вентиляционную сеть вытяжки кухни, ванной комнаты и туалета. В настоящее время согласно «Техническим рекомендациям по организации воздухообмена в квартирах многоэтажного жилого дома» это ограничение снято.

В условиях свободной планировки квартир объединение общим горизонтальным вытяжным воздуховодом трех-четырех зон требует специальных архитектурно-планировочных решений, устройства в квартире горизонтальной сети воздуховодов, что трудно осуществимо по конструктивным соображениям.

В отопительный период 2003-2004 годов в 3-комнатной квартире на 12-м этаже были проведены предварительные испытания квартирной системы вентиляции с утилизацией теплоты удаляемого воздуха. Общая площадь квартиры составляет 125 м2. Испытания проводились в квартире без отделки, без межкомнатных перегородок и дверей. Выборочные результаты испытаний приведены в табл. 22. Температура наружного воздуха 4 составляла от +4,1 до -4,5 °С при преимущественно облачной погоде. Температура воздуха в помещении tB поддерживалась квартирной системой отопления со стальными радиаторами, оборудованными термостатическими вентилями, в диапазоне от 22,8 до 23,7 °С. В ходе испытаний с помощью увлажнителей воздуха изменялась относительная влажность воздуха ф от 25 до 45%.

В квартире был установлен рекуперативный теплоутилизатор, максимальной производительностью по приточному воздуху Lnp = 430 м3/ч. Объем удаляемого воздуха Ь„игутл составлял примерно 60-70% от приточного, что обусловлено настройкой аппарата на утилизацию только части удаляемого воздуха.
Аппарат оборудован воздушными фильтрами приточного и вытяжного тракта и двумя электрическими нагревателями. Первый нагреватель номинальной мощностью 0,6 кВт предназначен для защиты вытяжного тракта от замораживания конденсата, который специальной дренажной трубкой через гидрозатвор отводится в канализацию. Второй нагреватель мощностью 1,5 кВт предназначен для догрева приточного воздуха tw до заданного комфортного значения.

Рис. 46. План квартиры с системой вентиляции: 1 – приточно-вытяжная установка с утилизатором; 2 – воздухозабор с лоджии; 3 – вытяжка из кухни; 4 – вытяжка из гостевого туалета; 5 – вытяжка из гардеробной; 6 - вытяжка из ванной; 7 - потолочный перфорированный воздухораспределитель

Для простоты монтажа он также выполнен электрическим.

В процессе испытания проводились измерения температуры и влажности наружного, внутреннего и удаляемого воздуха, расхода приточного и удаляемого воздуха, расхода теплоты квартирной системой отопления Qm по показаниям теплосчетчика, расхода электроэнергии.

Теплоутилизатор оборудован системой автоматики с контроллером и пультом управления. Система автоматики предусматривает включение первого нагревателя при достижении температуры стенки теплообменника ниже +1 °С, второй нагреватель может включаться и отключаться, обеспечивая постоянство заданной температуры приточного воздуха, которая находилась в процессе испытаний в диапазоне от 15 до 18,3 °С. Система управления вентиляторами позволяет выбрать три фиксированных режима расхода воздуха, соответствующих кратности воздухообмена от 0,48 до 1,15 1/ч.

Контроль и задание температуры и расхода воздуха осуществляется с дистанционного проводного пульта управления.

Испытания показали устойчивую работу квартирной системы вентиляции и энергетическую эффективность утилизации теплоты удаляемого воздуха.

Следует отметить ряд особенностей в проведении исследований, которые нельзя не принимать во внимание при оценке показателей воздушно-теплового режима квартиры.

1. В новостройках свежий бетон и раствор выделяют значительное количество влаги в помещения. Период, в течение которого влага в строительных конструкциях приходит в равновесное состояние, достигает 1,5-2 лет. Так, в результате испытаний примерно через полгода после заполнения монолита и укладки стяжки влагосодержание внутреннего воздуха при наличии вентиляции составляло 4-4,5 г/кг сухого воздуха, в то время как влагосодержание наружного воздуха не превышало 1-1,5 г/кг сухого воздуха.

По нашим оценкам, в монолитном здании для приведения конструкций в равновесное влажностное состояние необходимо ассимилировать до 200 кг влаги на каждый кв. метр площади пола. Количество теплоты, необходимое для испарения этой влаги, в начальный период равно 10-15 Вт/м2, а в период испытаний - 5-7 Вт/м2, что составляет значительную часть в тепловом балансе квартиры в холодный период года. Не учитывать этот фактор при осуществлении отопления и вентиляции опрометчиво, особенно в монолитном домостроении.

2. В процессе испытаний отсутствовали так называемые внутренние бытовые тепловыделения, размер которых в нормативах предлагается принимать 10 Вт/м2.
Представляется, что этот показатель должен быть дифференцированным в зависимости от площади квартиры на одного жителя.

В больших квартирах (более 100 м2) с площадью на одного человека 30-50 м2 вероятное значение этого показателя должно снижаться до 5-8 Вт/м2. В противном случае проектная тепловая мощность систем отопления и вентиляции зданий может оказаться заниженной на 10-30%.

Однако более целесообразно во время строительства, в частности зданий с монолитными конструкциями, выделяющими в помещения много влаги, перед сдачей зданий и особенно перед их заселением производить просушку с помощью находящихся в распоряжении строителей мощных электронагревателей. К сожалению, такая просушка до проведения испытаний не производилась.

Как отмечалось, рассматриваемое экспериментальное здание проектировалось и строилось как энергосберегающее. По результатам проведенных испытаний с поправками на прогнозируемые бытовые тепловыделения и теплоту испарения влаги в строительных конструкциях были рассчитаны удельные теплоэнергетические характеристики 3-комнатной квартиры в расчете на 1 м2 площади при поддержании в квартире температуры 20 °С.

Результаты расчетов показали, что после отделки квартир и заселения здания удельный расчетный годовой расход теплоты на отопление и вентиляцию снижается почти вдвое со 132 до 70 кВт ч/(м2 год), а с применением утилизации теплоты до 44 кВт ч/(м2 год).

Дальнейшая эксплуатация здания позволит проверить принятые в предварительных расчетах допущения.

Исследования экспериментальной системы должны охватить все факторы, характеризующие ее работу, в том числе и психологическое отношение жильцов, использующих новые для них устройства.

Электроподогрев воздуха в экспериментальной системе по сравнению с использованием для этой цели теплоты от теплофикации, к которой присоединено здание, экономически неоправдан. Такое решение было принято для удобства эксперимента, в частности, для замеров, касающихся расходов теплоты. Однако, по мнению авторов, со временем человечество начнет переходить на полное электротеплоснабжение жилых городских зданий. Поэтому экспериментальное исследование системы, в которой квартирная вентиляция работает с использованием электровоздухонагревателей, представляет интерес для будущего.

Главным назначением вытяжной вентиляции является устранение отработанного воздуха из обслуживаемого помещения. Вытяжная вентиляция, как правило, работает в комплексе с приточной, которая, в свою очередь, отвечает за подачу чистого воздуха.

Для того чтобы в помещении был благоприятный и здоровый микроклимат, нужно составить грамотный проект системы воздухообмена, выполнить соответствующий расчет и сделать монтаж необходимых агрегатов по всем правилам. Планируя , нужно помнить о том, что от нее зависит состояние всего здания и здоровье людей, которые в нем находятся.

Малейшие ошибки приводят к тому, что вентиляция перестает справляться со своей функцией так, как нужно, в комнатах появляется грибок, отделка и стройматериалы разрушаются, а люди начинают болеть. Поэтому важность правильного расчета вентиляции нельзя недооценивать ни в коем случае.

Главные параметры вытяжной вентиляции

В зависимости от того, какие функции выполняет вентиляционная система, существующие установки принято делить на:

  1. Вытяжные. Необходимы для забора отработанного воздуха и его отведения из помещения.
  2. Приточные. Обеспечивают подачу свежего чистого воздуха с улицы.
  3. Приточно-вытяжные. Одновременно удаляют старый затхлый воздух и подают новый в комнату.

Вытяжные установки преимущественно используются на производстве, в офисах, складских и прочих подобных помещениях. Недостатком вытяжной вентиляции является то, что без одновременного устройства приточной системы она будет работать очень плохо.

В случае если из помещения будет вытягиваться больше воздуха, чем поступает, образуются сквозняки. Поэтому приточно-вытяжная система является наиболее эффективной. Она обеспечивает максимально комфортные условия и в жилых помещениях, и в помещениях промышленного и рабочего типа.

Современные системы комплектуются различными дополнительными устройствами, которые очищают воздух, нагревают или охлаждают его, увлажняют и равномерно распространяют по помещениям. Старый же воздух безо всяких затруднений выводится через вытяжку.

Прежде чем приступать к обустройству вентиляционной системы, нужно со всей серьезностью подойти к процессу ее расчета. Непосредственно расчет вентиляции направлен на определение главных параметров основных узлов системы. Лишь определив наиболее подходящие характеристики, вы можете сделать такую вентиляцию, которая будет в полной мере выполнять все поставленные перед ней задачи.

По ходу расчета вентиляции определяются такие параметры, как:

  1. Расход.
  2. Рабочее давление.
  3. Мощность калорифера.
  4. Площадь сечения воздуховодов.

При желании можно дополнительно выполнить расчет расхода электроэнергии на работу и обслуживание системы.

Вернуться к оглавлению

Пошаговая инструкция по определению производительности системы

Расчет вентиляции начинается с определения ее главного параметра — производительности. Размерная единица производительности вентиляции — м³/ч. Для того чтобы расчет расхода воздуха был выполнен правильно, вам нужно знать следующую информацию:

  1. Высоту помещений и их площадь.
  2. Главное назначение каждой комнаты.
  3. Среднее количество человек, которые будут одновременно пребывать в комнате.

Чтобы произвести расчет, понадобятся следующие приспособления:

  1. Рулетка для измерений.
  2. Бумага и карандаш для записей.
  3. Калькулятор для вычислений.

Чтобы выполнить расчет, нужно узнать такой параметр, как кратность обмена воздуха за единицу времени. Данное значение устанавливается СНиПом в соответствии с типом помещения. Для жилых, промышленных и административных помещений параметр будет различаться. Также нужно учитывать такие моменты, как количество отопительных приборов и их мощность, среднее число людей.

Для помещений бытового назначения кратность воздухообмена, использующаяся в процессе расчета, составляет 1. При выполнении расчета вентиляции для административных помещений используйте значение воздухообмена, равное 2-3 — в зависимости от конкретных условий. Непосредственно кратность обмена воздуха указывает на то, что, к примеру, в бытовом помещении воздух будет полностью обновляться 1 раз за 1 час, чего более чем достаточно в большинстве случаев.

Расчет производительности требует наличия таких данных, как величина обмена воздуха по кратности и количеству людей. Необходимо будет взять самое большое значение и, уже отталкиваясь от него, подобрать подходящую мощность вытяжной вентиляции. Расчет кратности воздухообмена выполняется по простой формуле. Достаточно умножить площадь помещения на высоту потолка и значение кратности (1 для бытовых, 2 для административных и т.д.).

Чтобы выполнить расчет обмена воздуха по числу людей, проводится умножение количества воздуха, которое потребляет 1 человек, на число людей в помещении. Что касается объема потребляемого воздуха, то в среднем при минимальной физической активности 1 человек потребляет 20 м³/ч, при средней активности этот показатель поднимается до 40 м³/ч, а при высокой составляет уже 60 м³/ч.

Чтобы было понятнее, можно привести пример расчета для обыкновенной спальни, имеющей площадь, равную 14 м². В спальне находится 2 человека. Потолок имеет высоту 2,5 м. Вполне стандартные условия для простой городской квартиры. В первом случае расчет покажет, что обмен воздуха равняется 14х2,5х1=35 м³/ч. При выполнении расчета по второй схеме вы увидите, что он равен уже 2х20=40 м³/ч. Нужно, как уже отмечалось, брать большее значение. Поэтому конкретно в данном примере расчет будет выполняться по числу людей.

По этим же формулам рассчитывается расход кислорода для всех остальных помещений. В завершение останется сложить все значения, получить общую производительность и выбрать вентиляционное оборудование на основании этих данных.

Стандартные значения производительности систем вентиляции составляют:

  1. От 100 до 500 м³/ч для обычных жилых квартир.
  2. От 1000 до 2000 м³/ч для частных домов.
  3. От 1000 до 10000 м³/ч для помещений промышленного назначения.

Вернуться к оглавлению

Определение мощности воздухонагревателя

Чтобы расчет вентиляционной системы был выполнен в соответствии со всеми правилами, необходимо обязательно учитывать мощность воздухонагревателя. Это делается в том случае, если в комплексе с вытяжной вентиляцией будет организована приточная. Устанавливается калорифер для того, чтобы поступающий с улицы воздух подогревался и поступал в комнату уже теплым. Актуально в холодную погоду.

Расчет мощности воздухонагревателя определяется с учетом такого значения, как расход воздуха, необходимая температура на выходе и минимальная температура поступающего воздуха. Последние 2 значения утверждены в СНиП. В соответствии с этим нормативным документом, температура воздуха на выходе калорифера должна составлять не меньше 18°. Минимальную температуру внешнего воздуха следует уточнять в соответствии с регионом проживания.

В состав современных вентиляционных систем включаются регуляторы производительности. Такие приспособления созданы специально для того, чтобы можно было снижать скорость циркуляции воздуха. В холодное время это позволит уменьшить количество энергии, потребляемой воздухонагревателем.

Для определения температуры, на которую устройство сможет нагреть воздух, используется несложная формула. Согласно ей, нужно взять значение мощности агрегата, разделить его на расход воздуха, а затем умножить полученное значение на 2,98.

К примеру, если расход воздуха на объекте составляет 200 м³/ч, а калорифер имеет мощность, равную 3 кВт, то, подставив эти значения в приведенную формулу, вы получите, что прибор нагреет воздух максимум на 44°. То есть если в зимнее время на улице будет -20°, то выбранный воздухонагреватель сможет подогреть кислород до 44-20=24°.

Вернуться к оглавлению

Рабочее давление и сечение воздуховода

Расчет вентиляции предполагает обязательное определение таких параметров, как рабочее давление и сечение воздуховодов. Эффективная и полноценная система включает в свой состав распределители воздуха, воздуховоды и фасонные изделия. При определении рабочего давления нужно учитывать такие показатели:

  1. Форма вентиляционных труб и их сечение.
  2. Параметры вентилятора.
  3. Число переходов.

Расчет подходящего диаметра можно выполнять с использованием следующих соотношений:

  1. Для здания жилого типа на 1 м пространства будет достаточно трубы с площадью сечения, равной 5,4 см².
  2. Для частных гаражей — труба сечением 17,6 см² на 1 м² площади.

С сечением трубы напрямую связан такой параметр, как скорость воздушного потока: в большинстве случаев подбирают скорость в пределах 2,4-4,2 м/с.

Таким образом, выполняя расчет вентиляции, будь то вытяжная, приточная или приточно-вытяжная система, нужно учитывать ряд важнейших параметров. От правильности этого этапа зависит эффективность всей системы, поэтому будьте внимательны и терпеливы. При желании можно дополнительно определить расход электроэнергии на работу устраиваемой системы.

Loading...Loading...