Color music on RGB LED strip

We present to you a simple version of the color music installation, which was assembled in an unusual case. Recently we came across scrap metal profiles 20×80 and used them. In the project, it is assembled using 10W LEDs of different colors (green, blue and red).

LED color music scheme


LED color music circuit 3 channels 10 watts each

Now the strobe - it is made on the NE555 timer. As for the problem of limiting the LED current, we use the simplest solution, limiting the current through selected resistors. The resistors are bolted to the profile for heat removal and do not overheat at all, operating at a maximum temperature of 60C. The current for each LED was limited to 800 mA.

LED strobe circuit on NE555 timer

Device design

Toroidal transformer 14V 50VA. The NE555 strobe along with the IRF540 MOSFET drives two 10W cool white diodes through 5W 1.5 Ohm resistors.


CMU housing made of aluminum

All LEDs are mounted on aluminum strips, which are mounted into a common aluminum profile. After 3 hours of testing, the structure remains cold.


CMU on LEDs with a strobe in the housing

Set-top box controls

The case was equipped with potentiometers for adjusting levels, a microphone input, a power switch, a fuse, a 220 V network socket and an operating mode switch (strobe-CMU). The entire body is 700 mm long. The effect is very beautiful and powerful. You can easily illuminate a room of at least 200 square meters.

Beginner Radio Amateur Competition
“My amateur radio design”

Competition design for a beginner radio amateur
“Five-channel LED color music”

Hello dear friends and site guests!
I present to your attention the third competition work (second competition of the site) of a novice radio amateur. Author of the design: Morozas Igor Anatolievich:

Five-channel LED color music

Hello radio amateurs!

Like many beginners, the main problem was where to start, what my first product would be. Started with what I wanted to purchase a home first. The first is color music, the second is a high-quality headphone amplifier. I started from the first one. Color music using thyristors seems to be a hackneyed option, so I decided to put together color music for LED RGB strips. I present you with my first job.

The color music scheme was taken from the Internet. Color music is simple, with 5 channels (one channel is white background). You can connect an LED strip to each channel, but for it to work at the input you need a low-power signal amplifier. The author suggests using an amplifier from computer speakers. I went from a complicated point, to assemble an amplifier circuit according to the datasheet on a TDA2005 2x10 W microcircuit. This power seems to me to be enough, even with a reserve. I diligently redraw all the diagrams in the sPLAN 7.0 program

Fig. 1 Color music circuit with an input signal amplifier.

In the color music circuit, all capacitors are electrolytic, with a voltage of 16-25v. Where it is necessary to observe polarity, there is a “+” sign; in other cases, changing the polarity does not affect the blinking of the LEDs. At least I didn't notice it. KT819 transistors can be replaced with KT815. Resistors with a power of 0.25 W.

In the amplifier circuit, the microcircuit must be placed on a radiator of at least 100 cm2. Electrolytic capacitors with voltage 16-25v. Film capacitors C8, C9, C12, voltage 63v. Resistors R6, R7 with a power of 1 W, the rest 0.25 W. Variable resistor R0 - double, with a resistance of 10-50 kohms.

I took a factory switching power supply with a power of 100W, 2x12v, 7A

On a day off, as expected, a trip to the radio market to purchase radio parts. The next task is to draw a printed circuit board. For this I chose the Sprint-Layout 6.0 program. It is recommended by radio specialists for beginners. It is easy to learn, I am convinced of this.

Fig 2. Color music board.

Fig 3. Power amplifier board.

The boards were manufactured using LUT technology. There is a lot of information about this technology on the Internet. I like it when it looks factory, so LUT did the parts too.


Fig 3.4 Assembling radio components on a board

Fig 5. Checking functionality after assembly

As always, the most “difficult” thing when assembling a radio circuit is to assemble everything into a housing. I bought the case ready-made at a radio store.


I made the front panel this way. In the Photoshop program, I drew the appearance of the front panel where variable resistors, a switch and LEDs should be installed, one from each channel. The finished drawing was printed with an inkjet printer on thin glossy photo paper.


I glue photo paper onto a degreased prepared panel with holes using wood glue:


Then I place the panels under the so-called press. For a day. As a press, I have a 15 kg barbell plate:


Final assembly:


Here's what happened:

Attachments to the article:

(2.9 MiB, 2,736 hits)

Dear friends and site guests!

Don’t forget to express your opinion on the competition entries and take part in voting for your favorite design on the site’s forum. Thank you.

Some suggestions for those who will repeat the design:
1. You can connect speakers to such a powerful stereo amplifier, then you get two devices in one - color music and a high-quality low-frequency amplifier.
2. Even if the polarity of connecting electrolytic capacitors in a color music circuit does not affect its operation, it is probably better to observe the polarity.
3. At the color music input, it is probably better to install an input node for summing signals from the left and right channels (). According to the author, judging by the diagram, the high-frequency color music channel (blue) is supplied with a signal from the right channel of the amplifier, and the remaining color music channels are supplied with a signal from the left channel of the amplifier, but it is probably better to supply a signal to all channels from the audio signal adder.
4. Replacing the KT819 transistor with KT815 implies a reduction in the number of possible LED connections.

This LED color music is suitable for those who listen to music on the computer. It can be placed inside the case and it will be illuminated to the beat of the music.

The color music scheme is very simple and does not present any difficulties.


Required components:
1. 4 LEDs (any color) 3mm
2. P2 plug
3. 2 position switch
4. Bipolar transistor TIP31
5. The box (if needed) can also be placed directly in the computer case
6. Soldering iron
7. Cable

We connect 4 LEDs to +12 V of the computer, connect the anode to a 2-position switch, which in turn is connected to a TIP31 bipolar transistor. We connect the two unused ends of the transistor directly to the terminals of the plug for headphones or speakers P2.

We install all assembled components in a box (box), or directly into the computer case - this is up to everyone’s own discretion. We made holes for the LEDs, switch and plug.

Installation of LED color music in a box

Let's connect the LEDs, transistor and switch

1 of 2


Connecting LEDs


General assembled view with transistors

Next comes the most interesting part. It is necessary to solder the LEDs together, the transistor and the switch. From the photographs it is clear without words. The only thing is that we had to select the length of the conductors so that they would fit in the box.

We connect the common negative from the LEDs to the middle contact of the switch. From the switch, one of the positions is connected to the middle pin of the transistor, connect the second position according to the color music diagram that we presented above.

Installation of wires to plug P2

Final stage

1 of 2


Installation of diode color music circuit


Soldered plug

If we disassemble the headphone plug, we can see three connectors inside - left and right channels, ground. We connect one of the channels to the left pin of the Tip31 transistor. If P2 is connected through the left channel and it does not “beat” with the computer output, then our circuit will not work. Therefore, immediately decide correctly or experiment. Ground (usually a long connector) should be connected to the right pin of the transistor.

One of the switch pins should be connected to ground from the transistor. With this connection, the LEDs will start blinking if there is any signal at the output. If there is no signal coming from connector P2, if there is a signal on the other side, they will light up constantly.

We mount everything in the box, connect it and check its functionality.

In this article we will talk about color music. Probably every beginning radio amateur, and not only others, at one time or another had the desire to assemble color music. What this is, I think, is known to everyone - to put it simply, it is the creation of visual effects that change to the beat of the music.

That part of color music that emits light can be performed using powerful lamps, for example, in a concert setup; if color music is needed for home discos, it can be done using ordinary 220 volt incandescent lamps, and if color music is planned, for example, as computer modding, for everyday use, it can be done with LEDs.

Recently, with the advent of LED strips on sale, color and music consoles using such LED strips are increasingly used. In any case, to assemble Color Musical Installations (CMUs for short) a signal source is required, which can be a microphone with several amplifier stages assembled.

Also, the signal can be taken from the linear output of a device, a computer sound card, from the output of an mp3 player, etc., in this case an amplifier will also be required, for example, two stages on transistors; for this purpose I used KT3102 transistors. The preamplifier circuit is shown in the following figure:

The following is a diagram of a single-channel color music with a filter, working in conjunction with a preamplifier (above). In this circuit, the LED flashes along with the bass (low frequencies). To match the signal level, a variable resistor R6 is provided in the color music circuit.

There are also simpler color music circuits that any beginner can assemble, using 1 transistor, and also not requiring a preamplifier; one of these circuits is shown in the picture below:

Color music on a transistor

The pinout diagram for the Jack 3.5 plug is shown in the following figure:

If for some reason it is not possible to assemble a pre-amplifier using transistors, you can replace it with a transformer turned on as a step-up. Such a transformer must produce voltage on the windings of 220/5 Volts. The transformer winding with a smaller number of turns is connected to a sound source, for example, a radio tape recorder, parallel to the speaker, and the amplifier must produce a power of at least 3-5 watts. A winding with a large number of turns is connected to the color music input.

Of course, color music is not only single-channel, it can be 3, 5 or more multi-channel, when each LED or incandescent lamp blinks while reproducing the frequencies of its range. In this case, the frequency range is specified by using filters. In the following circuit, a three-channel color music system (which I recently assembled myself), there are capacitors as filters:

If we wanted to use not individual LEDs in the last circuit, but an LED strip, then the current-limiting resistors R1, R2, R3 should be removed from the circuit. If the strip or LED is used RGB, it must be made with a common anode. If you plan to connect long LED strips, then to control the strip you should use powerful transistors installed on radiators.

Since LED strips are designed for 12 Volt power supply, we should accordingly raise the power supply in the circuit to 12 Volts, and the power supply should be stabilized.

Thyristors in color music

Until now, the article has only talked about color and music devices using LEDs. If there is a need to assemble a digital control unit using incandescent lamps, then thyristors will need to be used to control the brightness of the lamps. What is a thyristor anyway? This is a three-electrode semiconductor device, which accordingly has Anode, Cathode And Control electrode.

KU202 Thyristor

The figure above shows the Soviet thyristor KU202. Thyristors, if you plan to use them with a powerful load, also need to be mounted on a heat sink (radiator). As we see in the figure, the thyristor has a thread with a nut and is attached similarly to powerful diodes. Modern imported ones are simply equipped with a flange with a hole.

One of these thyristor circuits is shown above. This is a three-channel color music circuit with a step-up transformer at the input. In the case of selecting thyristor analogues, you should look at the maximum permissible voltage of the thyristors, in our case for the KU202N it is 400 volts.

The figure shows a similar color music diagram to the one shown above, the main difference in the lower diagram is that there is no diode bridge. Also, LED color music can be built into the system unit. I assembled such a three-channel color music with a preamplifier in a casing from a cider. In this case, the signal was taken from the computer’s sound card using a signal divider, the outputs of which connected active acoustics and color music. It is possible to adjust the signal level, both overall and separately by channel. The preamplifier and color music were powered from a 12 Volt Molex connector (yellow and black wires). The preamplifier and three-channel color music circuits for which they were assembled are shown above. There are other LED color music schemes, for example this one, also three-channel:

In this circuit, unlike the one I assembled, inductance is used in the mid-frequency channel. For those who want to first assemble something simpler, here is the following diagram for 2 channels:

If you collect color music using lamps, you will have to use light filters, which in turn can be either homemade or purchased. The picture below shows the filters that are commercially available:

Some fans of color and musical effects assemble devices based on microcontrollers. Below is a diagram of four-channel color music on the AVR tiny 15 MK:

The Tiny 15 microcontroller in this circuit can be replaced with tiny 13V, tiny 25V. And at the end of the review, I would like to say on my own that color music using lamps is inferior in terms of entertainment to color music using LEDs, since lamps are more inertial than LEDs. And for self-repetition, I can recommend this one:

The inexhaustible potential of LEDs has once again been revealed in the design of new and modernization of existing color and music consoles. 30 years ago, color music, assembled from multi-colored 220-volt light bulbs connected to a cassette recorder, was considered the height of fashion. Now the situation has changed and the function of a tape recorder is now performed by any multimedia device, and instead of incandescent lamps, super-bright LEDs or LED strips are installed.

The advantages of LEDs over light bulbs in color music consoles are undeniable:

  • wide color gamut and more saturated light;
  • various design options (discrete elements, modules, RGB strips, rulers);
  • high response speed;
  • low power consumption.

How to make color music using a simple electronic circuit and make LEDs blink from an audio frequency source? What options for converting an audio signal are there? Let's look at these and other questions using specific examples.

The simplest circuit with one LED

First you need to understand a simple color music circuit, assembled on one bipolar transistor, resistor and LED. It can be powered from a DC source with a voltage of 6 to 12 volts. This color music works on one transistor according to the principle of an amplification stage with a common emitter. A disturbing influence in the form of a signal with varying frequency and amplitude arrives at the VT1 base. As soon as the oscillation amplitude exceeds a certain threshold value, the transistor opens and the LED flashes.

The disadvantage of this simplest scheme is that the rate of blinking of the LED depends entirely on the level of the sound signal. In other words, a full-fledged color-musical effect will be observed only at one volume level. Lowering the volume will result in a rare wink, while increasing the volume will result in an almost constant glow.

Scheme with single-color LED strip

The simplest color music above on a transistor can be assembled using an LED strip in the load. To do this, you need to increase the supply voltage to 12V, select a transistor with the highest collector current exceeding the load current and recalculate the resistor value. This simple color music from an LED strip is perfect for beginning radio amateurs to assemble with their own hands, even at home.

Simple three-channel circuit

A three-channel audio converter allows you to get rid of the shortcomings of the previous scheme. The simplest scheme of color music with the division of the sound range into three parts is shown in the figure.
It is powered by a constant voltage of 9V and can illuminate one or two LEDs in each channel. The circuit consists of three independent amplifier stages assembled on KT315 (KT3102) transistors, the load of which includes LEDs of different colors. As a pre-amplification element, you can use a small step-down network transformer.

The input signal is fed to the secondary winding of the transformer, which performs two functions: galvanically isolates the two devices and amplifies the sound from the line output. Next, the signal goes to three parallel-connected filters assembled on the basis of RC circuits. Each of them operates in a specific frequency band, which depends on the values ​​of resistors and capacitors. The low-pass filter passes sound vibrations with a frequency of up to 300 Hz, as indicated by the blinking red LED. Sound in the range of 300-6000 Hz passes through the mid-pass filter, which is manifested in the flickering of the blue LED. The high-pass filter passes a signal whose frequency is greater than 6000 Hz, which corresponds to the green LED. Each filter is equipped with a trimming resistor. With their help, you can set the uniform glow of all LEDs, regardless of the musical genre. At the output of the circuit, all three filtered signals are amplified by transistors.

If the circuit is powered from a low-voltage DC source, then the transformer can be safely replaced with a single-stage transistor amplifier.
Firstly, galvanic isolation loses its practical meaning. Secondly, the transformer is several times inferior to the circuit shown in the figure in terms of weight, size and cost. The circuit of a simple audio amplifier consists of a KT3102 transistor, two capacitors that cut off the DC component, and resistors that provide the transistor with a common emitter. Using a trimmer resistor, you can achieve overall amplification of a weak input signal.

In the case when it is necessary to amplify the signal from the microphone, an electret microphone is connected to the input of the previous circuit, applying potential to it from the power source. The circuit of a two-stage preamplifier is shown in the figure.
In this case, the trimming resistor is located at the output of the first amplifier stage, which gives more opportunities for adjusting sensitivity. Capacitors C1-C3 pass the useful component and cut off the direct current. Any electret microphone is suitable for implementation; for normal operation, a bias of 1.5 V is sufficient.

Color music with RGB LED strip

The following circuit of a color music console operates on 12 volts and can be installed in a car. It combines the main functions of the previously discussed circuit solutions and is capable of operating in color music and lamp modes.

The first mode is achieved through contactless control of the RGB strip using a microphone, and the second mode is achieved through the simultaneous illumination of red, green and blue LEDs at full power. The mode is selected using a switch located on the board. Now let’s take a closer look at how to make color music that is perfect even for installation in a car, and what parts are required for this.

Structural scheme

To understand how this color music console works, let’s first consider its structural diagram. It will help trace the full path of the signal.
The source of the electrical signal is a microphone, which converts sound vibrations from the phonogram. Because This signal is too small and must be amplified using a transistor or operational amplifier. Next comes the automatic level controller (AGC), which keeps the sound fluctuations within reasonable limits and prepares it for further processing. Filters divide the signal into three components, each of which operates only in one frequency range. In the end, all that remains is to amplify the prepared current signal, for which transistors operating in switching mode are used.

Schematic diagram

Based on the structural blocks, we can proceed to a consideration of the circuit diagram. Its general appearance is shown in the figure.
To limit current consumption and stabilize the supply voltage, resistor R12 and capacitor C9 are installed. R1, R2, C1 are set to set the microphone bias voltage. Capacitor C fc is selected individually for a specific microphone model during the setup process. It is needed in order to slightly muffle the signal of the frequency that prevails in the microphone’s operation. Usually the influence of the high-frequency component is reduced.

Unstable voltage in the vehicle network can affect the operation of color music. Therefore, it is most correct to connect homemade electronic devices through a 12V stabilizer.

Sound vibrations in the microphone are converted into an electrical signal and, through C2, are supplied to the direct input of the operational amplifier DA1.1. From its output, the signal goes to the input of the operational amplifier DA1.2, equipped with a feedback circuit. The resistances of resistors R5, R6 and R10, R11 set the gain DA1.1, DA1.2 equal to 11. The elements of the OS circuit: VD1, VD2, C4, C5, R8, R9 and VT1, together with DA1.2, are part of the AGC. At the moment a signal of too large an amplitude appears at the output of DA1.2, transistor VT1 opens and, through C4, closes the input signal to the common wire. This results in an instantaneous reduction in the output voltage.

Then the stabilized alternating current of audio frequency passes through the cut-off capacitor C8, after which it is divided into three RC filters: R13, C10 (LF), R14, C11, C12 (MF), R15, C13 (HF). In order for the color music on LEDs to shine brightly enough, you need to increase the output current to the appropriate value. For tape with a consumption of up to 0.5A per channel, medium-power transistors such as KT817 or imported BD139 without mounting on a radiator are suitable. If the do-it-yourself light-music assembly involves a load of about 1A, then the transistors will require forced cooling.

In the collectors of each output transistor (parallel to the output) there are diodes D6-D8, the cathodes of which are connected to each other and connected to switch SA1 (White light). The second contact of the switch is connected to the common wire (GND). While SA1 is open, the circuit operates in color music mode. When the switch contacts are closed, all the LEDs in the strip light up at full brightness, forming a total white stream of light.

Printed circuit board and assembly parts

To make a printed circuit board, you will need a single-sided PCB measuring 50 by 90 mm and a ready-made .lay file, which can be downloaded. For clarity, the board is shown from the side of the radio elements. Before printing, you must set its mirror image. Layer M1 shows 3 jumpers placed on the parts side.
To assemble color music from an LED strip with your own hands, you will need accessible and inexpensive components. An electret type microphone, suitable in a protective case from old audio equipment. Light music is assembled on a TL072 chip in a DIP8 package. Capacitors, regardless of type, must have a voltage reserve and be designed for 16V or 25V. If necessary, the board design allows you to install output transistors on small radiators. A terminal block with 6 positions is soldered on the edge for supplying power, connecting an RGB LED strip and a switch. A complete list of elements is given in the table. In conclusion, I would like to note that the number of output channels in a homemade color music set-top box can be increased as many times as desired. To do this, you need to divide the entire frequency range into a larger number of sectors and recalculate the bandwidth of each RC filter. Connect LEDs of intermediate colors to the outputs of additional amplifiers: violet, turquoise, orange. Do-it-yourself color music will only become more beautiful from such an improvement.

The given diagrams belong to the site cxem.net

Read also

Loading...Loading...